1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Ацетиленовая горелка принцип работы

Горелка для полуавтоматической сварки

Как классифицируются горелки?

Разновидностей горелок для сварки довольно-таки много. Несмотря на то что принцип их работы примерно одинаковый, они могут обладать рядом особенностей:

  • Инжекторные и безынжекторные конструкции – они отличаются друг от друга по технологии подачи кислорода к участку горения;
  • Газовые или жидкостные. В первых для получения пламени требуемой температуры используется специальный горючий газ, а вторые работают на парах бензина или керосина;
  • Специализированные или универсальные, причем последние могут применяться для любых работ, связанных с резкой или сваркой металла;
  • Однопламенные и многопламенные дифференцируются в зависимости от потоков подаваемого пламени;
  • Машинные и ручные;
  • Газосварочные горелки могут классифицироваться по мощности: малая, средняя, высокая.

Общая информация

Горелка для полуавтомата обычно поставляется в комплекте со сварочным аппаратом и используется для подачи защитного газа с присадочной проволокой в сварочную зону. Ниже вы можете видеть схематичное устройство горелки. Оно может несколько отличаться в зависимости от модели и производителя, но суть останется неизменной.

Большинство моделей состоит из основы, изоляционного кольца, держателя проволоки. Также есть токопроводящие наконечники и сопло для полуавтоматической сварки.

Кстати, чаще всего из строя выходят именно наконечники и газовое сопло. Эти детали фактически являются расходниками и нуждаются в частой замене. Все дело в высоких температурах. Сопло и наконечник способны какое-то время противостоять им, но в конечном итоге выходят из строя. Иногда страдает держатель проволоки, так же из-за высоких температур. Принимайте это во внимание. Если вовремя не заменить, например, наконечник, то у сварочной проволоки просто не будет возможности подачи в сварочную зону.

Принцип работы безынжекторной работы

Если сварочная горелка работает на высоком давлении и имеет инжектор, то ее конструкция будет значительно проще по сравнению с конструкцией, где давление значительно ниже. Технология ее работы следующая:

  • Кислород поступает в нее через специальные шейки, выполненные из резины, проходя через вентиль, а затем направляется в смеситель;
  • В смесителе весь поток разделяется на множество небольших струй и направляется в сопло смесителя. По такой же технологии он направляется в специальный вентиль;
  • Полученная смесь в сварочных горелках MIG-MAG проходит по газовому потоку значительного сечения, где завершается циркуляция, на выходе она получается наиболее однородной;
  • На трубке наконечника расположен мундштук, который производится из долговечной не окисляющейся меди. Смесь на выходе будет сразу полностью сгорать, причем температура получается довольно высокой, которая будет значительно выше по сравнению с температурой плавления металла.

Чтобы в горелке, предназначенной для газосварки, газовый поток должен выходить равномерно с максимально точно выверенной скоростью, причем смесь должна будет полностью сгорать. Если скорость выхода газа небольшая, то пламя может переходить в верхнюю часть горелки – это довольно опасно, так как внутри горелки зачастую случается взрыв этой смеси.

При чересчур сильной скорости пламя будет отрываться от мундштука, станет отходить все дальше и дальше от среза, что в конечном счете приведет к его затуханию. Для определения требуемой скорости, необходимо принимать во внимание несколько важных данных: из чего состоит горючая смесь, какой внутренний диаметр у сопла, как устроен мундштук. Рассчитать правильную скорость подачи горючего можно только при условии, если известны все эти данные. Усредненным считается значение в пределах от 70 до 160 м/с. Чтобы в конечном счете на выходе получилась подходящая скорость, придется создать давление порядка 0,5 атмосферы, причем давление для газа или паров и кислорода примерно будет одним и тем же.

Сварочная горелка является основным инструментом газосварщика при сварке и наплавке. Сварочной горелкой называется устройство, служащее для смешивания горючего газа с кислородом и получения сварочного пламени. Каждая горелка имеет возможность регулировать мощность, состав и форму сварочного пламени.

Инжекторная горелка

Инжекторная горелка — это горелка, в которой подача горючего газа в смесительную

камеру осуществляется за счет подсоса его струей кислорода, вытекающего с большой скоростью из отверстия инжектора.

Этот процесс подсоса газа более низкого давления струей кислорода, подводимового с более высоким давлением, называется инжекцией, а горелки данного типа — инжекторными.

Рис. 65. Инжекторная горелка (18)

2-смесительная трубка (наконечник); 3-смешивающая дюза; 4-накидная гайка;5-область инжектора; 6-вентиль кислорода; 7-подсоединение шланга с кислородом, правая резьба R14; 8-вентиль для ацетилена; 9-подсоединение шланга с ацетиленом, левая резьба R38 Кислород из баллона под рабочим давлением через ниппель, трубку и вентиль 6 поступает в сопло инжектора 5. Выходя из сопла инжектора с большой скоростью, кислород создает разряжение в ацетиленовом канале, в результате этого ацетилен проходя через ниппель 9, трубку и вентиль 8 подсасывается в смесительную камеру 3. В этой камере кислород смешивается с горючим газом, образует горючую смесь. Горючая смесь, выходя через мундштук, поджигается и сгорая, образуется сварочное пламя. Подача газов в горелку регулируется кислородным вентилем 6 и ацетиленовым вентилем 8, расположенными на корпусе горелки. Сменные наконечники подсоединяются к корпусу горелки накидной гайкой.

Нагрев наконечника горелки уменьшает инжекцию кислорода и снижает разрежение в камере инжектора, что уменьшает поступление ацетилена в горелку. Так как поступление кислорода в горелку при этом остается постоянным , то уменьшается содержание ацетилена в газовой смеси и, следовательно, усиливается окислительное действие сварочного пламени. Для восстановления нормального состава сварочного пламени сварщик по мере нагревания наконечника горелки должен увеличивать поступление ацетилена в горелку, открывая ацетиленовый вентиль горелки.

При засорении мундштука горелки увеличивается давление горючей смеси в смесительной камере, горючая смесь обогащается кислородом, что ведет к усилению окислительного действия сварочного пламени.

Преимущество инжекторной горелки:

  • горелка работает на горючем газе как среднего, так и низкого давления

Недостаток инжекторной горелки:

  • непостоянство состава горючей смеси

Безинжекторная горелка

Безинжекторная горелка — это такая горелка, в которой горючий газ и кислород подаются примерно под одинаковым давлением. В них отсутствует инжектор, который заменен простым смесительным соплом, ввертываемым в трубку наконечника горелки.

Рис. 66. Безинжекторная горелка (18)

Для образования нормального сварочного пламени горючая смесь должна вытекать из канала мундштука горелки с определенной скоростью. Эта скорость должна быть равна скорости горения. Если скорость истечения больше скорости горения, то пламя отрывается от мундштука и гаснет. Когда скорость истечения газовой смеси меньше скорости горения, горючая смесь загорается внутри наконечника.

Недостаток безинжекторной горелки:

  • горелки менее универсальны, так как работают только на горючем среднего давления

Инжекторные горелки

Устройство сварочной горелки подразумевает использование в качестве горючего ацетилен, водород или метан, причем ею очень легко пользоваться. Принцип работы следующий: кислород из баллона поступает через специальный вентиль, проходя через конус инжектора, и попадает в смесительную камеру. Через инжектор закачивается горючий газ и интенсивно перемешивается с кислородом. После этого сформированная смесь отправляется по трубке наконечника в мундштук. Во многом благодаря кислороду давление вырывающегося из сопла мундштука газа становится значительно меньше по сравнению с атмосферным.

Однако для качественного горения и получения нормальной температуры оно должно быть хотя бы 3,5 атмосферы. Стоит отметить, что инжекторная горелка обладает одним очень серьезным недостатком: состав горючей смеси остается непостоянным, что не позволяет обеспечить качественное и постоянное ее горение.

Несмотря на то что данное изделие работает на низких давлениях, его используют значительно чаще, нежели конструкции, рассчитанные на высокое давление. Устроена данная продукция несколько сложнее, так как в ней предусмотрен специальный блок охлаждения сварочной горелки. Дело в том, что низкое давление вызывает довольно сильный нагрев сопла и других элементов. Главное здесь — не допустить, чтобы камера, где образуется горючая смесь, не перегрелась и не взорвалась.

Виды сварочных горелок по способу подачи газа и кислорода

По технологии смешивания воздушного и газового потоков различают 2 вида этих устройств – диффузионные и инжекционные.

Диффузионные (безинжекторные)

Эти модели относятся к устройствам наружного смешивания, которое происходит в камере сгорания. Принцип работы предельно простой – кислород и горючий газ поступают в горелку под равным давлением, смешиваются в камере, направляются в наконечник горелки.

Пламя в этом случае представляет собой конус, на поверхности которого и происходит смешивание газа и воздуха. Внутренняя часть факела состоит практически из чистого газа. Пламя – высокое, соломенного цвета, горение – нестабильное, с потрескиванием и бликами. Диффузионные модели применяются редко из-за следующих недостатков:

  • длинный факел требует достаточно высокой камеры сгорания;
  • неполное сгорание газа;
  • небольшое тепловыделение;
  • значительное количество вредных выбросов в атмосферу.

Инжекционные

В конструкцию сварочных горелок этого типа входит устройство, называемое инжектором, назначение которого – обеспечить подачу газа низкого давления в смесительную камеру способом его всасывания высоконапорной кислородной струей. Преимущества инжекционных моделей:

  • простая эксплуатация и удобное обслуживание;
  • более короткое пламя и высокая температура горения, по сравнению с безинжекторными моделями;
  • сохранение пропорциональности количества воздуха и газа при изменении давления последнего, что обеспечивает полное сгорание газа, высокое тепловыделение, малое количество вредных выбросов в атмосферу;
  • высокий КПД.

Особенности проведения сварочных работ с помощью газовой горелки

Прежде всего, газовые горелки отличаются тем, что они прекрасно подходят для полуавтоматических или автоматических сварных работ, когда сварная проволока подается без использования рук, что в значительной степени облегчает технологический процесс.

Благодаря автоматической сварке можно качественно проварить все труднодоступные участки, причем усилий придется прилагать минимальное количество. Отходов от таких работ минимальное количество. Сварной шов получается довольно прочным за гораздо меньший промежуток времени, нежели во время дуговой электросварки. Минусов у данной технологии не слишком много, они касаются, прежде всего, довольно высокой стоимости оборудования и комплектующих. Вся система отличается сложностью в плане устройства, продукция весьма тяжелая и громоздкая, поэтому перемещать ее с одного места на другое будет очень проблематично.

Технологический процесс сварки состоит из следующих этапов:

  • Участки свариваемых деталей нужно тщательно зачистить от всех следов ржавчины или коррозии. Можно сделать это с помощью специальной металлической щетки, насадки на угловую шлифовальную машину.
  • Обязательно следует обезжирить поверхность с помощью ТИГа или иных составов, иначе плавящийся электрод будет не слишком плотно прилегать к металлу;
  • Активируется газовая горелка, запускается полуавтоматический механизм подачи электрода и начинается непосредственная работа по соединению металлических элементов;
  • Обязательно следует установить скорость подачи электрода. Она зависит от типа свариваемых металлов, их толщины и целого ряда других факторов.

Как правильно обращаться с горелкой?

Перед тем как приступить к непосредственному выполнению работ, необходимо проверить, насколько хорошо работает инжекторная составляющая оборудования. Для этого к ниппелю, который подает кислород, подключают шланг кислородного редуктора. Осторожно поднимают давление в системе до рабочего.

Когда кислород будет проходить через инжектор, в ацетиленовом канале должно возникнуть разрежение. Если оно будет, то палец будет присасываться к ацетиленовому ниппелю. В этом случае подключают оба шланга и тщательно закрепляют их, только после этого можно поджигать горючую смесь и регулировать величину пламени.

При окончании работ сначала перекрывают вентиль ацетиленового баллона, а затем закрывают и кислородный вентиль. Если поступить наоборот, то может случиться удар огня в шланг, по которому подается ацетилен, что чревато взрывом. При соблюдении технологии работ удастся получить надежное соединение, которое будет долго сохранять свою прочность.

Как нужно пользоваться пропановой горелкой

Газовая пропановая горелка будет просто необходима при проведении кровельных работ, просушке форм для литья, удалении старой краски, опрессовке соединительных муфт, пайке медных труб и т.д. Перед использованием горелки приобретаются два баллона – с кислородом и пропаном – на которые монтируются понижающие редукторы. Последние обеспечивают оптимальное давление.

Когда редукторы с помощью шлангов будут присоединены к газовой горелке, можно откручивать вентили и выпускать газ. Перед тем, как воспламениться, газы проходят через инжектор, где происходит их смешивание. Температура выходящего пламени превышает 2 тысячи градусов.

Для проведения работ вначале открывается вентиль с горючим газом, затем – с кислородом. Выходящую из сопла смесь необходимо поджечь. Настройка напора расходного материала производится исходя из показаний приборов или цвета пламени. После, с помощью присадочной проволоки, формируется сварная ванна, и расплавленный металл нужно перемещать, формируя шов. Когда работа будет завершена, присадочная проволока убирается, газовая смесь тушится.

Ацетиленовые горелки: описание и правила применения

  1. Характеристика
  2. Назначение
  3. Принцип работы
  4. Критерии выбора
  5. Правила использования

Даже люди, далёкие от мира сварочных технологий, периодически слышат что-то об ацетиленовых горелках. Но чтобы эффективно варить металл, этих знаний, конечно, недостаточно. Обязательно необходимо учесть профессиональное описание устройства и правила его применения.

Характеристика

Сварочная ацетиленовая горелка — это специальное устройство, в которое подаётся для сгорания особый газ (ацетилен). Его используют чаще других приспособлений для газовой сварки. Причины популярности вполне очевидны:

пригодность для работы даже при ограниченном наборе оборудования;

высокая эффективность применения (оправданная даже на атомных и иных ответственных объектах).

Температура горения ацетилена больше, чем у любого другого из сварочных газов. Она достигает 3200 градусов. Причина состоит в том, что реакция ацетиленового горения — эндотермическая, в то время как другие газы поглощают тепло в процессе распада. Полное сгорание 1 куб. м. этого газа потребует использовать 2,5 куб. м. воздуха. Таковы расчеты, проведённые химиками на основе формул реагирующих веществ.

Однако на практике в пламени ацетилен сгорает лишь неполно, поэтому при реальной сварке расход воздуха не превышает 1-1,2 куб. м. Из-за этого общая полезная производительность по теплу вместо теоретически рассчитанных 13500 ккал на 1 м3 составляет только 5120 ккал на 1 м3. На практике чаще всего используют кислородно-ацетиленовую смесь, в которой 55% приходится на ацетилен, а остальные 45% массы представлены кислородом.

Именно такое соотношение позволяет добиться наивысшей возможной температуры сжигания.

Полезно разобраться также, чем ацетиленовая горелка отличается от пропановой на практике. Первый тип в основном используется для работы со сравнительно тонким (не более 6 мм) металлом. Наконечники горелочных устройств содержат, кроме инжектора, также мундштук и трубку. Пропорции отверстий в мундштуках и инжекторах рассчитываются строго индивидуально для каждого используемого газа. Поэтому для замены газа приходится использовать другой наконечник, желательно того же производителя.

Назначение

Ацетиленовые горелки можно применять для сварки и резки практически всех металлов и сплавов. Они нужны в строительстве, промышленности, сельском хозяйстве. Востребованность этого метода высока благодаря следующим характеристикам:

независимости от электропитания;

сравнительно медленному аккуратному прогреву поверхности;

более эффективной обработке свинца, чугуна, меди, латуни (в сравнении с электродуговой обработкой).

Принцип работы

Подавляющее большинство ацетиленовых горелок использует инжекторную схему. Эти устройства делятся на ствол и наконечник. Дополнительно присутствуют ниппели под кислород и ацетилен, вентили.

Чтобы начать работу, требуется залить газогенераторную ёмкость вплоть до верхней пробки. В корзину укладывают карбид кальция, после чего крышку накрепко запирают.

Получение газа из 1 кг карбида потребует израсходовать 6 л воды. Образующийся ацетилен проходит сквозь водяной затвор и штуцер в сварочный шланг. Как только давление превышает уровень 1,5 кгс на 1 кв. см., клапан предохранения начинает пропускать избыточный газ в атмосферу. Сами горелки, куда поступает ацетилен, делятся на инжекторный и безинжекторный типы.

В индустрии используют главным образом инжекторные системы.

Горючее вещество подсасывается кислородной струёй. Кислород движется из сопла инжектора, причём скорость его перемещения очень велика. Влиять на уровень подачи ацетилена и кислорода можно при помощи вентилей. Для всех номеров мундштуков подбираются свои режимы использования газов. Их подбирают сообразно толщине металла и методу сварки.

С безинжекторными горелками всё несколько проще. В них горючий ацетилен и кислород поступают под неизменным давлением от начала и до конца. Условия использования на состав смеси не влияют. Так как ниппели имеют различную резьбу, подсоединить шланг к источнику «не того» газа практически невозможно. В самом начале оба вентиля должны быть перекрыты.

Начинают с откручивания кислородного крана на 1 или 2 оборота, лишь затем выпускают ацетилен. Когда кислород через вентиль попадёт в инжекторное сопло, возникает область пониженного давления в ацетиленовом канале. Оттуда начинается засасывание небольшого количества газа в камеру для смешивания. Давление ацетиленовой струи при этом не превышает 0,02 кгс на 1 кв. см.

Через трубку наконечника смешанный состав поступает в мундштук. Далее он выбрасывается из сопла. Сварщик поджигает кислород-ацетиленовую комбинацию. Затем за счёт манипуляций с вентилями он добивается голубой расцветки пламени (в сочетании с красной зоной в середине). Для самой сварки применяют средний участок огня, расположенный сразу за ядром (температура в этом месте составляет 3150 градусов).

Иногда ацетиленовая горелка стреляет. Это обычно провоцируется нарушением рекомендованного давления на выходе из баллона. Пламя регулируют индивидуально. В ряде случаев помогает небольшой сдвиг в пользу кислорода.

Внимание стоит уделить и герметичности всех соединений, шлангов.

Критерии выбора

Важными требованиями для газосварочного оборудования являются лёгкость и компактность. Если эти моменты не обеспечены, перемещать устройства будет труднее. При выборе самих ацетиленовых горелок следует сразу учесть, что они делятся на 2 типа: один предназначен для сварки, а другой — для резки металла. Актуально и различие горелочных устройств по мощности. Есть 4 основных класса:

маломощный (с наконечниками 1-4, для металла от 0,3 до 7 мм);

среднего уровня (наконечники 5-7, работа с изделиями толщиной 7-30 мм);

ГАО-2 (используют в очистке поверхностей);

безинжекторные (главное применение — сварка давлением 0,01-0,08 МПа).

Правила использования

Подготовка к разжиганию ацетиленовой горелки не слишком сложна, но должна вестись кропотливо. Первым шагом будет подключение редукторов давления. Ёмкости для выработки ацетилена либо баллоны ставят строго вертикально. Их желательно даже закрепить, чтобы исключить падение или опрокидывание. Перед началом работ стоит убедиться, что пропускной канал вентиля не засорён и не содержит посторонних включений.

Отверстие для выпуска направляют от себя. Вентиль быстро откручивают на четверть и немедленно закрывают его. Это позволяет выдуть многие загрязнения. Продувка около места самой работы недопустима. Нельзя вести её также там, где есть искры и тем более открытый огонь. Когда этот этап подготовки пройден, присоединяют редукторы на баллоны.

Для неподходящего к баллону редуктора используют переходник. Гайки на редукторах затягивают гаечными ключами. Внимание: разводной ключ не подойдёт, обязательно должно быть неизменное отверстие. Регулировка после открытия газового баллона возможна. Но в таком случае надо непременно перекрывать подачу и лишь затем подтягивать гайку.

Винт немного откручивают влево, пока не будет достигнуто свободное вращение. Такая настройка должна быть проведена на всех редукторах. До накачки давлением клапан требуется держать перекрытым; снимать давление поможет вращение регулирующего винта против хода часов. Шланги подключают к редукторам на соответствующих баллонах.

Непосредственная подача газов на горелку перед работой производится максимально медленно. Настроить нужное давление поможет выходной манометр. Превышать рекомендуемое производителем горелки давление нецелесообразно. Чтобы правильно разжечь пламя, стоит не только ознакомиться с инструкцией, но и изучить сайт изготовителя, тематические форумы. Разжигать огонь можно только специальной зажигалкой, спички любого рода использовать нельзя.

Если из горелки не выходит пламя, клапан ацетилена надо перекрыть. Затем внимательно обследуют все соединения. Выход кислорода в момент зажигания недопустим. Подачу ацетилена понижают, добиваясь клубов черного дыма. Затем её снова увеличивают, пока этот дым не пропадет; внимательно следят, чтобы огонь выходил ровно из наконечника, а не «вырывался» и не «отскакивал» от него.

Правильно отрегулированный огонь — ровный, голубого окраса. Малейшее шипение недопустимо. При внезапном гашении горелки следует немедленно остановиться. Это означает, что горелка напрямую коснулась металла. Если разжечь её не получается, или потухание прозошло без касания металла, налицо ошибка в подборе давления либо выход сопла из строя.

В таких случаях правильнее всего приостановить работу и ещё раз внимательно всё проверить. Опасность представляет обратный удар пламени. При этом раздаётся явное шипение или свист. В такой ситуации требуется сначала дождаться охлаждения горелки, а затем уже пытаться разжечь её с нуля. При сохранении обратного удара пламени, вероятна неисправность отдельных деталей устройства – его не чинят, а заменяют.

Читать еще:  Установка и монтаж горелок для котлов на отработанном масле

Нельзя допускать к ацетиленовой горелке детей, домашних питомцев или неподготовленных людей. Работать с ней можно только людям с короткими волосами. Чтобы не обстригать их, надо завязывать или накрывать банданой, шапкой. Сопла горелок надо поддерживать в чистоте. При малейших неисправностях работу следует немедленно останавливать.

Описание и правила применения горелок смотрите в следующем видео.

§ 5. Газопламенные горелки. Устройство и принцип работы инжекторной сварочной горелки. Типы и основные параметры одноплеменных универсальных ацетилено-кислородных горелок (ГОСТ 1077-69).

Газопламенные горелки предназначены для смешения горючего газа или паров горючих жидкостей с кислородом или воздухом и получения устойчивого высокотемпературного пламени. Различные конструкции газопламенных горелок можно классифицировать следующим образом:

а) по способу подачи горючего газа в смесительную камеру: инжекторные и безынжекторные;

б) по расходу горючего газа: микромощности (10-60 дм 3 /ч ацетилена), средней мощности (50-2800 дм 3 /ч ацетилена), большой мощности (2800-7000 дм 3 /ч ацетилена);

в) по назначению: универсальные (для сварки, пайки, наплавки, подогрева, закалки, поверхностной очистки и т. п.); специализированные (только сварка, подогрев, закалка, очистка поверхностей и т. д.);

г) по числу рабочего пламени: однопламенные, многопламенные;

д) по способу применения: для ручных процессов газопламенной обработки, для механизированных процессов.

Наибольшее применение находят инжекторные газопламенные горелки. В горелке этого типа горючая смесь образуется за счет инжектирования (подсоса) горючего газа кислородом, который проходит по центральному отверстию инжектора. Выходя из маленького отверстия инжектора в камеру смешения, кислород расширяется, теряя давление; происходит подсос ацетилена. Устройство такой горелки показано на рис. 41. Разрез инжекторного устройства приведен на рис. 42. Для нормальной работы инжекторной горелки давление поступающего в нее кислорода должно быть 2÷4 кгс/см 2 . Давление же ацетилена может быть значительно ниже — от 0,01 до 0,1 кгс/см 2 (или от 100 до 1000 мм вод. ст.).

Рис. 41. Устройство и принцип работы инжекторной сварочной горелки:

1 — кислородный ниппель, 2 — рукоятка, 3 — кислородная трубка, 4 — корпус, 5 — регулирующий кислородный вентиль, 6 — ниппель наконечника, 7 — мундштук ацетилено-кислородной горелки, 8 — мундштук пропан-бутан-кислородной горелки, 9 — штуцер, 10 — подогреватель, 11 — трубка горючей смеси, 12 — трубка смесительной камеры, 13 — инжектор, 14 — регулирующий вентиль горючего газа, 15 — трубка горючего газа, 16 — ниппель горючего газа; а — канал малого сечения, б — канал смесительной камеры, в — зазор между стенками смесительной камеры и корпусом инжектора, г — боковые отверстия в штуцере; I — сменный наконечник для ацетилено-кислородной горелки, II — сменный наконечник для пропан-бутан-кислородной горелки

Рис. 42. Разрез инжекторного устройства:

1 — смесительная камера, 2 — накидная гайка, 3 — корпус горелки, 4 — инжектор

В безынжекторных горелках (горелках равного давления) ацетилен и кислород поступают в смесительное устройство под одинаковыми давлениями в пределах 0,5÷1,0 кгс/см 2 . Обычно это горелки небольшой мощности, как, например, горелка Г1.

Для ряда процессов газопламенной обработки (нагрев, пайка, сварка пластмасс и т. п.), где не требуется высокой температуры пламени, применяют камерно-вихревые горелки, работающие на пропан-воздушной смеси. В таких горелках вместо мундштука имеется камера сгорания, в которую поступают пропан и воздух. Пропан подается по центральному каналу, а воздух — по многозаходной спирали, что вызывает вихреобразование и смешивание газовой смеси в камере сгорания.

Согласно ГОСТ 1077-69, универсальные однопламенные горелки для ацетилено-кислородной сварки, пайки и подогрева выпускаются четырех типов (табл. 15). Этим же стандартом установлено 12 номеров сменных наконечников с различным расходом ацетилена и кислорода (табл. 16).

15. Типы и основные параметры одноплеменных универсальных ацетилено-кислородных горелок (ГОСТ 1077-69).

Горелка малой мощности

Горелка средней мощности

Горелка большой мощности

ТипыНаименованиеРасход, л/чДавление на входе в горелку, кгс/см 2Нормальная комплектовка горелки наконечниками номеровПринцип действия
ацетиленакислородаацетиленакислорода
наим.наиб.наим.наиб.наим.наиб.наим.наиб.
Г15606650,101,000,11,0000, 00, 0Безынжекторный
Г225430284400,010,350,54,00, 1, 2, 3Инжекторный
Г35028005531000,351,04,0То же
Г428007000310080000,351,202,04,08,9»

16. Расход ацетилена и кислорода для различных номеров наконечников горелок (ГОСТ 1077-69)

Номера наконечников горелокРасход газа, л/ч
ацетиленакислорода
000От 5 до 10От 6 до 11
00Св. 10 » 25Св. 11 » 28
» 24 » 60» 28 » 65
1» 50 » 125» 55 » 135
2» 120 » 240» 130 » 260
3» 230 » 430» 250 » 440
4» 400 » 700» 430 » 750
5» 660 » 1100» 740 » 1200
6» 1030 » 1750» 1150 » 1950
7» 1700 » 2800» 1900 » 3100
8» 2800 » 4500» 3100 » 5000
9» 4500 » 7000» 4700 » 8000

Горелка любого типа снабжена рукояткой с запорно-регулировочными вентилями для кислорода и ацетилена и набором сменных наконечников. На маховичках вентилей нанесены: наименование газа (кислород или ацетилен), стрелки, указывающие направление вращения при открывании и закрывании вентилей, буквы О (открыто) и 3 (закрыто).

Накидная гайка и штуцер, служащие для присоединения к рукоятке ниппеля для ацетилена, должны иметь левую резьбу. Кислородный ниппель присоединяется накидной гайкой с правой резьбой.

Ниже приводится краткое описание некоторых марок горелок.

Назначение и преимущества ацетиленовых горелок

Газовая ацетиленовая горелка разработана для реализации газокислородной сварки в ручном режиме. Кроме того, с ее помощью можно подогревать стальные заготовки, проводить пайку, наплавку и прочие виды термической обработки. Оборудование данного типа хорошо подходит для сварки металлических элементов толщиной 3–20 мм. На горелке предусмотрено семь сменных наконечников, для установки которых на ствол используются накидная гайка. Устройство оснащено удобными вентилями, регулирующими подачу кислорода и ацетилена.

Особенности конструкции

Традиционно газовые горелки включают в себя такие конструктивные элементы:

  • держатель для захвата (обычно — медный или алюминиевый);
  • головка (может иметь разный диаметр, в зависимости от толщины и типа разрезаемых материалов);
  • направляющие роликового типа;
  • вентили, отвечающие за регулировку движения рабочего газа;
  • сопло (материал изготовления – жаропрочная медь).

Производство отечественных газовых горелок регламентирует ГОСТ 29091. Изделия данного типа широко используются для реализации монтажных и демонтажных мероприятий. Чтобы повысить эффективность и производительность ацетиленовой горелки, в ее конструкцию вводят воздушное или водяное охлаждение.

Для коммутации к подающим рукавам используются быстросъемные соединения. Регулировка тепловой мощности, состава и конфигурации рабочего факела осуществляется посредством эргономичных регуляторов механического типа.

Преимущества

Ацетиленовые горелки обладают целым рядом достоинств:

  • легкость, эргономичность;
  • простота использования, обслуживания и замены вышедших из строя деталей;
  • усиленная прочность и стойкость к нагреванию рабочих деталей;
  • способность разрезать металлические заготовки любой толщины (главное — подобрать подходящую головку);
  • способность функционировать в уличных условиях при температуре от -40 до +50 градусов.
  • экономичный расход ацетилена и кислорода;
  • наличие в модельном ряду горелок бытового и промышленного назначения.

Чтобы подключить кислородный и ацетиленовый баллон, в комплектацию оборудования прилагаются специальные рукава, ниппели и гайки.

Ацетиленовая сварка: особенности и технология

Помните, как в юном возрасте мы собирали на стройках или за гаражами куски карбида, дополняли находку пластиковой бутылкой с водой и играли в подрывников? Весёлое было детство и опасное. Теперь мы выросли и знаем, что такие вещи надо использовать строго по назначению с соблюдением всех мер безопасности.

Вспомним уроки химии: ацетилен – бесцветный горючий газ, с резким запахом. Непредельный углерод класса алкинов с формулой С2Н2. Вещество взрывоопасно и способно к самовоспламенению в определённых условиях. При горении пламя достигает температуры 3150 °С. Этого хватает, чтобы перевести в жидкое состояние даже тугоплавкие металлы. Поэтому газ ацетилен идеально подходит для сварки и резки металлоконструкций.

Ацетиленовая сварка

Для начала небольшой экскурс в историю. Патент на ацетилено-кислородную сварочную горелку датируется 1903 годом. Интересно, что её конструкция принципиально не изменилась и в наше время. В промышленности ацетиленовая сварка начала применяться в 1906 году, после того как появились генераторы ацетилена достаточной надёжности. В то время уже был известен электродуговой способ соединения металлов, но сварка ацетиленом уверенно завоевала свои позиции и активно применяется до сих пор.

Раньше сварщикам приходилось самостоятельно получать ацетилен. Карбид кальция засыпали в бак-генератор, наполненный водой. В результате реакции выделялся газ, который по шлангу поступал в горелку. Сюда же подводился из отдельного баллона кислород, выполняющий функцию катализатора. Процесс подготовки занимал много времени, зато оставшийся карбид можно было использовать повторно. В наше время всё проще. Достаточно купить баллон, уже наполненный ацетиленовым газом.

Применение

Ацетилено-кислородную смесь применяют для сваривания практически всех металлов, включая чёрные, цветные и их сплавы. Но есть исключения, к которым относятся стали:

хромистая и высокохромистая;

Ацетиленовая газовая сварка активно применяется в строительно-монтажных процессах, но особое распространение она получила при прокладке труб. Регулируя мощность пламени, можно соединять, резать или проводить газопламенную чистку металла.

Ацетиленовая сварка: технология работы

Во время сварочного процесса расплавляются и перемешиваются кромки соединяемых деталей. Дополнительно вводится присадочный материал. После застывания образуется прочный шов. Чтобы ацетилен сгорал полностью и не дымил, необходим катализатор – кислород. Оба газа из отдельных баллонов подводятся по шлангам к горелке и смешиваются. Оптимальная пропорция смеси – 45% ацетиленового газа и 55% кислорода. Без кислорода ацетилен сгорает не полностью, пламя будет дымить.

Подготовка к сварке

Прежде всего, очистите своё рабочее пространство от всего лишнего. Уберите на безопасное расстояние или надёжно защитите легковоспламеняющиеся материалы. Свариваемые поверхности должны быть очищены от грязи, ржавчины и окислов. При необходимости заранее проведите их правку, разметку, гибку и сборку.

Качество соединения металлов зависит от трёх основных факторов:

Мощность пламени – подбирают в зависимости от свойств (теплопроводности и температуры плавления) и толщины металла. С увеличением мощности возрастает расход горючего газа. Регулируют режим подбором горелок (от Г1 до Г4) и наконечников к ним разной величины.

Диаметр присадочной проволоки – измеряется в миллиметрах и рассчитывается так: померьте толщину свариваемого металла, поделите на два, к получившемуся значению прибавьте 1 мм.

Угол сварки – зависит от толщины. Чем больше, тем тупее угол и наоборот. Рабочий диапазон наклона горелки относительно детали от 10 до 80 градусов. Прогрев поверхности осуществляют всегда под прямым углом. А завершающий этап, на котором формируется кратер, делают с минимальным углом – это исключает риск прожечь металл.

Работа с горелкой

Оба газовых баллона оснащены редукторами, которыми регулируется давление на выходе. Оптимально выставлять значения до двух атмосфер. Большие показатели осложняют регулировку пламени. Открыв вентили на баллонах, выставите нужное давление, затем можно поджигать горелку. Первым открывают вентиль подачи ацетилена и поджигают вырывающийся из сопла газ. Затем плавно откручивают второй вентиль, пуская кислород, и регулируют пламя.

Виды пламени

Горящий факел состоит из нескольких частей, которые можно различить визуально. Самая короткая и ближайшая к горелке – ядро. Дальше идёт восстановительная (рабочая) зона. Внешняя наибольшая часть – факел, отвечающий за нагрев металла.

В зависимости от соотношения количества ацетилена и кислорода пламя делится на три вида:

Нормальное – пропорции газов 1:1 или 1:1,1. Все три зоны чётко видны, ядро имеет ровный округлый конец. Это самый распространённый вид. Применяется при работе с различными сталями и цветными металлами.

С избытком ацетилена – над ядром появляется зелёный ореол, рабочая зона пламени плохо различима, а сам факел жёлтого цвета. Применимо для работы с чугуном.

Избыток кислорода – все зоны укорачиваются, ядро бледнеет, становится конусообразным. Пламя шумит сильнее обычного и приобретает синевато-фиолетовый оттенок. Применимо для сварки латуни.

Способы ведения горелки и введение присадочной проволоки

Чтобы образовалась сварочная ванна, заготовку необходимо прогреть. Пламя направляется под прямым углом так, чтобы ядро находилось в 1-3 мм от поверхности. Когда металл приобретёт светло-жёлтый цвет – ванна готова, можно приступать к формированию шва.

Технология ацетиленовой сварки подразумевает ведение горелки двумя способами: справа налево (на себя) и слева направо (от себя).

В первом случае пламя направлено вперёд от шва, присадка расположена перед горелкой. Работая таким способом, удобно визуально контролировать шов. Применимо для тонкостенных деталей (до 5 мм).

Второй способ (от себя) используют при работе с металлом толщиной более 5 мм. Пламя горелки направлено в сторону шва. Это позволяет замедлить его остывание и повышает качество. Однако из-за того, что визуальный контроль осложняется, такое соединение будет выглядеть не слишком аккуратным.

Присадку подают либо непосредственно в сварочную ванну, либо ведут над швом. Горелку медленно продвигают вдоль соединения с поперечными дугообразными движениями. Ядро не должно касаться сварочной ванны.

Завершающий этап ацетиленовой сварки: как закрывать горелку и баллоны

Первым на горелке перекрывается ацетилен и только затем – кислород. Далее необходимо удалить из рукавов оставшийся газ. Перекройте баллоны, а вентили на горелке приоткройте. Дождитесь, когда прекратится шипение и стрелка на манометре покажет ноль. Затем обязательно закройте все вентили.

Оборудование и средства защиты

Для сварки ацетиленом потребуется минимум оборудования, которое стоит относительно недорого:

Баллоны с газом. Баллоны с ацетиленовым газом обычно окрашиваются в белый цвет, с кислородом – в голубой.

Редукторы для регулировки давления с обратными клапанами для защиты от обратного удара.

Два рукава для подачи газов в горелку.

Газовая горелка с мундштуком необходимой величины.

Горелки

Ацетиленовые горелки различаются по мощности, которая зависит от сменного наконечника. Размер подбирается в зависимости от толщины свариваемого металла. Минимальный размер – нулевой, максимальный – пятый. Чем больше диаметр сопла, тем больше газовой смеси подаётся в сварочную ванну, а значит сильнее и глубже прогревается металл.

Никогда не покупайте газосварочный инструмент от малоизвестных фирм. От его качества зависит ваша безопасность. Хорошим выбором для ручной ацетиленовой сварки в домашних условиях станет горелка КЕДР Г-2 Малютка с наконечниками размером от 0 до 3 или горелка малой мощности КЕДР Г-2А-02 Малютка. Обе снабжены сменными наконечниками для регулировки мощности и позволяют выполнять все виды газопламенной обработки металла – от нагрева и пайки до сварки и резки.

Средства защиты

Во время сварочного процесса есть риск повредить кожу или глаза. Отлетающие расплавленные частички металла способны привести к серьёзным травмам. Во избежание этого всегда работайте в сварочном костюме из толстой ткани. Большое количество брызг попадает на руки. Их необходимо защитить в первую очередь. Обычные рабочие перчатки здесь не подойдут, они легко прожигаются и не способны противостоять даже мелким искрам.

Сварочные краги должны надёжно защищать руки от температурного и абразивного воздействия, но при этом не сковывать движения и обеспечивать чувствительность. Перчатки сварщика (краги) производства российской компании Кедр максимально соответствуют этим качествам. Они долговечны и удобны.

Во время газовой сварки вспышки отсутствует УФ-излучение. Но варить в обычных сварочных затемнённых очках не рекомендуется. Такая защита становится модной, особенно среди сварщиков-блогеров. Но вам станет плевать на модные тенденции после того как первая капля расплавленного металла попадёт вам на лицо. Присмотритесь к полноценным маскам сварщика от производителя КЕДР. Они удобны и надёжны. Да и те, кому важен дизайн, смогут среди предлагаемого на сайте разнообразия подобрать для себя подходящий вариант. При этом можно заказать доставку не только по Москве, но и во все регионы страны.

Взрывоопасность

Опасная особенность ацетилена – склонность к самовоспламенению. Это может произойти при температуре от 300 °С и давлении 150-200 кПа (1,5-2 атмосферы). При хранении и транспортировке ацетилена соблюдайте технику безопасности:

Храните и используйте баллоны с ацетиленом только в вертикальном положении. Держите их вдали от отопительных приборов и защищайте от прямых солнечных лучей.

Применяйте только специально предназначенные для ацетилена клапаны и регуляторы давления.

Отслеживайте содержание ацетилена в воздухе. Концентрация выше 0,5 % взрывоопасна.

Открывайте баллон только неискрящимся ключом.

Не допускайте долгого контакта с медью или серебром.

Если произошло возгорание, постарайтесь удалить из опасной зоны баллоны с газом, которые ещё не успели нагреться. Оставшиеся охлаждайте, поливая водой. Если загорелся газ, выходящий из баллона, перекройте вентиль и остудите водой. При сильном возгорании находиться рядом с баллонами опасно, тушить огонь лучше с безопасного расстояния.

Плюсы и минусы сварки ацетиленом

Первое и неоспоримое преимущество – это мобильность. Варить можно хоть в чистом поле без привязки к электричеству, причём практически все виды металлов. Нет необходимости в операционных стыках, даже если выполняется поворотный шов с большим расстоянием до стены. Можно сваривать между собой детали из разных металлов. Температура пламени регулируется – это позволяет уменьшить деформацию и точно подобрать режимы. Отсутствует сильное разбрызгивание металла.

К недостаткам можно отнести тот факт, что тепло от пламени распространяется на большую площадь детали и может изменить её свойства. Нельзя варить ацетиленом высокоуглеродистые стали. Детали толщиной более 5 мм тоже лучше доверить электросварке. При варке внахлёст образуется напряжение металла, из-за чего впоследствии возможна деформация. Ну и естественно – взрывоопасность.

Заключение

Сварка ацетилено-кислородной смесью практически незаменима, когда необходимо соединить тонкостенные трубы. С её помощью легко варить изделия из чугуна, цветных металлов и конструкционных сплавов. Сварка ацетиленом с успехом используется для ремонтных работ и пайки, а также для восстановления своими руками изношенных деталей. Например, на выработанную поверхность коленчатого вала можно наплавить новый слой металла, а затем точением и шлифовкой довести его до нужного размера и класса шероховатости.

Однако скорость работы небольшая и напрямую зависит от толщины металла. Так 1-миллиметровую листовую сталь сварщик может варить ацетиленом со скоростью 10-15 метров в час. При увеличении толщины до 5 мм, скорость работы упадёт в 3-4 раза. Это стоит учитывать, при планировании сроков предстоящей работы.

Начинающим сварщикам освоить ацетиленовую сварку не составит труда. Но делать это желательно под руководством опытных мастеров, соблюдая технику безопасности.

Выбор газовой горелки для сварочных работ

Газопламенные горелки используются для сварочных работ, нагрева и закалки металла, а также очистки поверхности металла от загрязнений. Принцип работы сварочной горелки – смешение горючего газа

или паров горючей жидкости с газом для поддержки горения для получения высокотемпературного устойчивого «клина» пламени. В качестве горючего газа используется ацетилен (ацетиленовая горелка), пропан-бутан, природный газ и т. д., в жидкостных сварочных горелках в качестве горючего вещества используют пары бензина или керосина. Газ для поддержки устойчивого горения – кислород или атмосферный воздух. Основным критерием при выборе сварочной горелки следует считать стабильное и ровное пламя необходимого уровня мощности.

Классификация газопламенных сварочных горелок

Газовые горелки классифицируют по способу подачи газов в смесительную камеру – инжекторные и безинжекторные.

По мощности или расходу горючего газа – микромощности с расходом горючего газа от 10 л/час; малой мощности, c расходом горючего газа 25-400 л/час; средней мощности, с расходом 400-2800 л/час или большой мощности, с расходом 2800-7000 л/час.

По виду горючей смеси – газовые горелки (горючий газ), жидкостные горелки (пары горючей жидкости).

По назначению горелки разделяют на универсальные (газовая сварка, пайка, нагрев, очистка металла) и специализированные.

По количеству потоков и способу применения горелки бывают однопламенными — ручные горелки и многопламенными — наряду с однопламенными используются в механизированных установках.

Ацетиленовые сварочные горелки

Горелки для ацетиленовой сварки по ГОСТ 1077 подразделяют по мощности на четыре вида: Г1 (микромощность), Г2 (малая мощность), Г3 (средняя мощность), Г4 (большая мощность). Все горелки комплектуются наконечниками разной величины и разного диаметра выходного канала. Сменные наконечники изготавливаются из теплостойких и теплопроводных материалов – меди М3, хромистой бронзы БрХ0,5.

Прежде чем перейти к выбору газовой горелки необходимо определиться с ее назначением и областью применения. В бытовых условиях и в гаражной мастерской наибольшее распространение получили горелки малой и средней мощности. Например, однопламенные универсальные ацетиленовые горелки малой мощности Г2 используются для сварки металла с толщиной кромок от 0,2 до 0,7 мм. Комплектуются горелки Г2 четырьмя сменными наконечниками разного размера.

С помощью горелок средней мощности Г3 сваривают изделия из цветных металлов и сплавов на их основе, а также чугуна. Горелки Г3 могут использоваться не только для сварки, но и для наплавки, пайки или нагрева металла. В комплект таких горелок входит уже семь разных насадок. Толщина кромок свариваемого металла от 0,5 до 30 мм.

Инжекторные и безинжекторные сварочные горелки

Отличие инжекторные и безинжекторных горелок в способе подачи газа. Инжекторные распространены больше, конструкция инжектора, который представляет собой полый цилиндр с отверстием небольшого диаметра по центру для кислорода и радиальными отверстиями для горючего газа, позволяет кислороду нагнетать (подсасывать) горючую смесь в камеру смешения. При этом кислород подается под давлением, а горючая смесь свободно нагнетается потоком кислорода. Мощность сварочного пламени в инжекторных горелках регулируется с помощью сменных наконечников. Недостатком инжекторных моделей является относительно нестабильное пламя из-за того, что смесь горючего газа с кислородом не является постоянной, состав газа меняется. Из-за низкого давления горючего газа, сопло с мундштуком инжекторной горелки склонно к перегреву.

В безинжекторных горелках кислород и горючая смесь подается с одинаковым давлением (в пределах 0,05-0,1 Мпа) и смешивается в смесительном сопле. Безинжекторные горелки, как правило имеют небольшую мощность (ацетиленовая горелка Г1). Количество газа, который подается в зону горения регулируется вентилями, маховики которых окрашивают соответственно: кислородный вентиль – синий цвет, вентиль для горючего газа – красный цвет.

Принцип устройства газовой горелки для пайки: как она работает?

Каждый мужчина когда-либо сталкивался с потребностью в пайке металлических предметов. Процесс этот не сложен, а проблема заключается в том, что не у каждого дома есть газовая горелка.

При желании и наличии свободного времени горелку для пайки можно собрать самостоятельно. Конечно, таких параметров пламени, как у заводских моделей, добиться вряд ли удастся, но для выполнения нехитрых бытовых работ мощности ее хватит.

Принцип устройства

Принцип действия горелки независимо от типа прост. В первую очередь требуется источник топлива – баллон со смесью пропана и бутана. Топливо поставляется к штуцеру паяльника через редуктор.

[stextbox использования дома выпускаются модели с баллончиками одноразового использования, которые подойдут для нечастого применения.[/stextbox]

Газ на большой скорости поступает к жиклеру по специальному проходу. В жиклере установлена игла, с помощью которой регулируется мощность пламени. При увеличении скорости в воздушном золотнике газ обогащается кислородом, требуемым для горения.

При помощи гильзы золотника регулируется объем воздуха, подаваемого к горючему газу. Так добиваются нужной интенсивности, контуров и параметров пламени.

[stextbox Газовая горелка для пайки сплавляет даже алюминий. Для такой работы потребуется применение специальной присадочного материала – припоя, изготовленного из легкоплавких металлов. Алюминий не будет перегреваться, благодаря чему создается высококачественное соединение.[/stextvbox]

Из чего состоит самодельная?

Самодельный паяльник состоит из таких элементов:

  • иголки, регулирующей поступление топлива;
  • ручки, изменяющей расположение иглы;
  • жиклера;
  • рассекателя;
  • золотника;
  • эжектора;
  • радиатора.

Наиболее подходящим материалом для изготовления частей конструкции считается бронза либо латунь, обладающие требуемой прочностью и теплопроводимостью. Сплавы отличаются коррозионной стойкостью, устойчивостью к деформациям и обуславливают продолжительный срок эксплуатации оборудования.

Опционально устройство можно оборудовать датчиком пламени горелки, укомплектовать пьезоподжигом для облегчения зажигания. Также не лишним оборудовать самодельной устройство ветрозащитой для горелки, иначе не минуть проблем с периодически гаснущим пламенем на сильном ветру.

Газовые рампы для горелки – что это такое? Это дополнительный прибор, использующийся при необходимости повышенного потребления газа. Устройство составляют пара коллекторов, гибкие шланги и регуляторы. На коллекторе установлен запирающий кран, допускающий выполнение смены баллона на одном из питающих устройств без остановки процесса. Уменьшение давления газа производится рамповым редуктором.

Разновидности ручных

Атмосферные

Инжекционные газовые горелки представляют собой устройства, работа которых основывается на инжекции (всасывании) воздуха в корпус мощной струей газа.

Такое оборудование популярно и востребовано в основном на предприятиях и заводских цехах по причине принудительного поступления воздушного потока. Для пользователей-любителей же инжекционные горелки слишком затратны и приобретать их особого смысла нет.

Горелка газовоздушная работает по такому принципу. Воздушный поток всасывается в корпус, где соединяется с горючим газом.

[stextbox некоторых моделей основана на обратном принципе – газ затягивается под влиянием мощного воздушного потока.[/stextbox]

Такой вариант допустим в ситуации, когда давление газа равно атмосферному. При прохождении по соплу газовоздушная смесь разгоняется, создается разреженная зона за соплом.

Устройства, у которых выполняется полное смешивание газа со средним давлением с требуемым объемом воздуха, при функционировании выпускают малое пламя.

Лампы с неполным соединением газа и воздуха для объединения в корпус поступает лишь до 60% от нужного объема. Недостающий воздух приходит извне прямо к пламени при разрежении в топке газовоздушного потока, инжектированного в смеситель.

Инжекторные приборы с малым давлением газовоздушной смеси отличаются устойчивостью пламени и применяются для разнообразных тепловых нагрузок.

Эжекционные (с наддувом)

Эжекционные приборы отличаются специфичным предназначением и конструкцией. Они – верные спутники конструкторов и специалистов, выполняющих спайку цветных металлов. Повышенная температура и возможность регулирования потока позволяют использовать паяльные лампы для закаливания металлов либо иной термообработки, требующей повышенной точности и резких очертаний конуса огня.

В зависимости от области применения устройство и габариты паяльника и дюз различаются.

Самые портативные модели применяются в ювелирном деле и для спаивания тонких металлов – они незаменимы при выполнении филигранной работы.

Лампы средних размеров с конусом 3-9 мм используются для электропайки муфт, алюминиевых и медных труб, изделий из меди и ее сплавов.

Крупные устройства отличаются высокой мощностью, потому используются для таких работ, как точная сгибка, художественная ковка, штамповка. Применяются они также как основа для создания домашних горнов и печей для закалки.

Эжекторные паяльники обладают высокой устойчивостью пламени со стабильной температурой. Для снижения потребления газа и оперативного достижения требуемой мощности в них используется преднагревательный контур.

Другие виды

Также выпускаются горелки, в которых применяется МАРР вместо привычной смеси пропана и бутана или природного газа. Пламя таких паяльников способно гореть с температурой 2200-2400°С. Основной поток энергии концентрируется в конусе с ярко выраженными контурами.

Такие устройства применяются для прогревания, ковки, сгибания массивных заготовок либо изделий из высокоуглеродистых марок стали, закалки и отпуска металла. МАРР отличается низкой температурой кипения, использование такого газа возможно даже в паяльниках без подогревающего контура.

По типу топлива паяльники разделяются на:

  • пропановые;
  • ацетиленовые;
  • водородные;

Особенность пропановых горелок для пайки – формирование чрезвычайно тонкой струи огня. Благодаря этому устройства такого типа применяются для точечной обработки металлов, фигурного резания, изготовления декоративных элементов.

Для работ с использованием ацетильно-кислородных горелок необходимо правильно подбирать размер наконечника и тип форсунки, через которую будет подаваться смесь из ацетилена и кислорода. Зажечь паяльник можно только после появления из сопла характерного для горючего газа запаха, после добавления кислорода образуется пламя синего цвета. При ошибках в настройках, ацетиленовая горелка станет резать, а не сваривать.

Сформированная водородной горелкой дуга отличается высокой устойчивостью независимо от проведения предварительной обработки соединяемых элементов. Для работы требуется использование электролизера, то есть кислородно-водородного газосварочного прибора, в котором под воздействием электротока в автоматическом режиме выполняется разделение воды на водород и кислород.

[stextbox Выбор в пользу определенного типа горелки по мощности производится в зависимости от толщины сопрягаемых деталей. Изделия толщиной до 3 мм поддаются обработке при мощности паяльника 1,5 киловатт. Для прутьев и металлических плит толщиной до 14 мм необходима мощность как минимум 2-3 кВт.[/stextbox]

Параметры для изготовления

Перед сборкой горелки следует заранее определиться с требуемыми параметрами, основными из которых являются:

  1. Тип пламени – факельный либо вихревой. Конструкция беспламенных горелок слишком сложна для изготовления в домашних условиях. Факельное пламя воздействует на маленькую площадь и применяется для точеной сварки. При помощи вихревого можно быстро прогреть большие площади поверхности.
  2. Устройство для корректирования пламени. Регулятор позволяет уменьшать ил повышать поток в зависимости от материала и способа обработки. Для управления можно использовать водопроводный вентиль.

Cвоими руками – чертежи

Для сборки паяльника потребуются:

  • заготовки из латуни для создания форсунки и рассекателя;
  • латунная трубка;
  • пластинки из жароустойчивых материалов;
  • электродрель;
  • тиски;
  • силикон либо иной уплотнитель;
  • редуктор газовый;
  • рукава соединительные.

Пример элементов горелки представлен на чертеже.

Изготовление из подручных материалов: поэтапно

Форсунка и ручка

К трубке из латуни приделывается ручка, для ее изготовления можно воспользоваться ручкой от неисправной паяльной лампы. Второй вариант – брусок с диаметром продольного отверстия, равного размеру трубки. Для сопряжения применяется силиконовый клей либо эпоксидка. Ручке придается форма, удобная для руки.

К созданию форсунки следует отнестись очень тщательно. Ее отверстие сечением 0,1 мм выполнить дома практически невозможно, потому сначала устраивается широкое, а края его забиваются до требуемого размера. Для ускорения процесса деталь зажимается в тисках, по ней наносятся вертикальные удары молотком с оттягиванием по направлению к центру.

Удары наносятся круговые во избежание отклонения подающегося газа при пользовании. Головку следует почистить мелкой наждачкой. С оборотной стороны форсунки устраивается резьба, позволяющая ей соединиться с трубкой подвода газа.

Регулировка пламени

Изготовленной по вышеописанной схеме горелкой уже можно пользоваться. Аппарат будет работать после соединения элементов в единую конструкцию. Остается лишь подключить газовый баллон, открыть вентиль и поджечь.

Но при этом возникнут некоторые неудобства – регуляция газового потока доступна только посредством крана на баллоне, максимально возможной мощности пламени добиться не удастся. Прибор нужно укомплектовать рассекателем и краном.

Кран можно установить непосредственно на горелке либо на подводящей трубе. Удобнее для работы, когда вентиль смонтирован недалеко от ручки (выше на 3-4 см). Сам кран также можно позаимствовать со старого автогена. Устройство фиксируется на резьбе, уплотняющейся ФУМ-лентой.

Для изготовления рассекателя используется латунная заготовка цилиндрической формы с отверстиями: одним – для подводящей трубки и несколькими параллельными ему меньшего сечения.

Заготовка закрепляется на трубке так, чтобы кромки ее выходили на 2-3 мм за пределы форсунки. Рассекатель выполняет сразу две функции:

  • обеспечивает ветрозащиту;
  • проводит поток кислорода, требуемого для поддержания стабильного горения.

Порядок работы

Для спаивания крупных элементов между собой удобно пользоваться профессиональной горелкой. Для спайки деталей небольших размеров рекомендуется применять приборы, работающие на ацетилене либо светильном газе. В последнем случае наблюдается большая эффективность, к тому же, этот тип топлива дешевле.

При сопряжении спайкой небольшого количества деталей желательно их заранее прогревать, что сократит время на одинаковый нагрев всех элементов. Это исключает появление коробления и иных дефектов.

Перед работой каждому элементу следует придать неподвижной положение и исключит их сдвиг в процессе спайки. Выполняется это на верстаке либо ином приспособлении.

Непосредственно перед спайкой на соединяемые кромки наносится флюс. Если возникла необходимость в добавлении флюса в процессе производства работ, следует горячий конец детали помещать в припой, а не наоборот.

Для соединения элементов из разнородных металлов пламя нужно направлять на тот материал, теплопроводность которого выше. Также следует внимательно отнестись к сопряжению разноразмерных деталей.

[stextbox Обязательно нужно проследить за тем, чтобы все элементы были одинаково прогреты. Толстые детали следует прогревать дольше.[/stextbox]

Припой в огне горелки расплавлять нельзя, так как он будет стекать каплями. Расплав необходимо создавать при касании проволоки с поверхностью основного элемента.

Припой всегда стремится протечь в наиболее прогретые участки спайки. Потому пламя следует направлять до припоя. Если он не может попасть в шов, значит элемент не приобрел требуемую для соединения температуру.

Места спаечного соединения не нужно прогревать слишком долго, потому как это приведет к изменениям в составе припоя и его выгоранию. Эффективность использования флюса значительно снизится.

[stextbox Прохоров, сварщик, стаж работы 15 лет: «Производится огромное количество газовых горелок для пайки, различающихся по используемому газу, мощности, области использования. Для домашней работы вполне сгодится и самодельная паяльная лампа, а для чего-то более серьезного необходимо приобрести выпускаемый серийно инструмент».[/stextbox]

Ацетиленовая горелка

Основным рабочим инструментом каждого газосварщика является газовая горелка. Именно она выполняет в конечном итоге главную задачу процесса – создаёт высокотемпературное пламя, необходимое для подогрева и расплавления свариваемых изделий. Газовая горелка в связи с этим должна обеспечивать это пламя однородным, что является главным условием получения действительно качественного и прочного соединения. К тому же она должна быть максимально безопасной и удобной в работе, что скажется на качестве сварного соединения и скорости работы.

Очень часто при производстве газосварочных работ используется как составляющая горючей смеси газ ацетилен. Для сварки этим газом используются как специальные газовые горелки, так и универсальные, которые могут одновременно работать с другими газами и газовыми смесями. В случае применения ацетилена чаще всего используется привычный вариант горелки, которая подходит идеально для этого газа. Это инжекторная горелка, которая использует принцип всасывания ацетилена за счёт происходящего разряжения в газовых каналах и последующего смешивания с кислородом в камере смешения. Для этого они оборудуются инжектором. Затем смесь ацетилена и кислорода через мундштук поступает к месту сварки или пайки. Затем горючая смесь поджигается и образуется пламя.

Ацетиленовые горелки инжекторного типа называют ещё горелками низкого давления, то есть они чаще всего работают с ацетиленом, который поступает под низким давлением. Однако и при достаточно высоких показателях давления, они также справляются с работой. В этом роде это универсальные горелки. Есть другой вид горелок – безынжекторные. Они работают только с газом, который находится под высоким давлением, при низком давлении газа они не используются. Безынжекторные горелки имеют одно существенное преимущество – они не перегреваются, а это значит, что ацетилен поступает стабильно, его давление не падает, как в случаях с инжекторными горелками, где давление ацетилена надо постоянно регулировать. Однако за счёт того, что отечественная промышленность производит преимущественно ацетилен низкого и среднего давления, широкого применения такие горелки не имеют.

Для того чтобы получить пламя необходимой для конкретного вида работы температуры, ацетиленовая горелка оборудуется манометрами, при помощи которых регулируется давление газа. Кроме этого горелка должны обеспечить оптимальную скорость прохождения горючей смеси, выходящей из мундштука. Эта скорость зависит от конструкционных особенностей самого мундштука, в частности от его диаметра на выходе.

Особой популярностью у специалистов пользуются универсальные газовые горелки, они интересуют нас как работающие на ацетилене, хотя они часто используют для сварки пропаном и другими газами. Как правило, эти горелки идут в комплекте с несколькими насадками разных диаметров. Таким образом, они могут обеспечить необходимую скорость прохождения горючей смеси, что позволяет их использовать в различных отраслях, даже в случаях, если необходимо производить очень точные работы, которые требуют малого диметра столба пламени. Такие универсальные горелки кроме этого поставляются в комплекте с двумя соплами для сварки и одним, предназначенным только для прогрева материала перед сваркой, а также для пайки с применением твёрдых припоев.

Ацетиленовые горелки последнего поколения имеют малый вес, скромные габариты, что позволяет производить сварочные работы в самых проблемных местах. Их различают по мощности. Есть ацетиленовые горелки малой и средней мощности. Они изготовлены из лёгких и прочных материалов, их конструкция очень удобна и в них соблюдены все требования безопасности.

Принцип работы газогенератора:

В емкость газогенератора заливают воду до уровня верхней пробки. В корзину кладут карбид кальция и плотно закрывают крышку. Расход воды для разложения 1 кг карбида кальция равен 6 л. При взаимодействии карбида кальция с водой происходит химическая реакция, в результате которой образуется горючий газ ацетилен С2Н2. Образовавшийся ацетилен поступает через водяной затвор в штуцер и далее в сварочный шланг. При повышении давления больше 1,5 кгс/см 2 , предохранительный клапан срабатывает и избыток ацетилена выпускается в атмосферу. Производительность генератора 1,5 м 3 /ч, давление газа 0,1-1,5 кгс/см 2 .

После окончания работы вручную через предохранительный клапан, выпускают весь не использованный ацетилен, снизив давление до . Только после этого можно открыть крышку горловины. Остатки карбида кальция из решетчатой корзины собрать в ведро. Также в ведро слить через нижнюю пробку известковую воду и сразу же промыть газогенератор и решетчатую корзину. Содержание ведра вылить в городскую канализацию или известковую яму.

Газогенераторы эксплуатировать в помещении нельзя, так как ацетилен от искры может взорваться.

Устанавливать генераторы можно на балконе или на улице, на расстоянии не менее 5 м от открытого пламени.

2. Водяные затворы.

Применяют для предохранения от взрыва ацетиленовых генераторов. Они не допускают попадания искры или пламени внутрь генератора от газосварочной горелки или резака при его обратном ударе.

Устанавливают водяные затворы на пути следования газа от генератора к сварочной горелке или резаку. Обратный удар происходит при перегреве горелки и засорении сопла или центрального отверстия инжектора.

По принципу устройства затворы разделяют на водяные и сухие. По принципу работы затворы бывают открытого типа при низком давлении (до 0,01 МПа) и закрытого типа при среднем давлении (свыше 0,1 МПа).

Принцип работы водяного затвора низкого давления

Затвор заполнен водой до уровня контрольного крана 5. Ацетилен по газопроводящей трубе 1 поступает в затвор, пройдя через слой воды, выходит по газоотводящему крану 4 к горелке.

Рис.6. Водяной затвор:

а) – при нормальной работе; б) – при обратном ударе

1 – газопроводящая труба; 2 – щиток; 3 – предохранительная трубка; 4 – газоотводящий кран; 5 – контрольный кран

Разность уровней в открытой сверху предохранительной трубке 3 и затворе, определяет рабочее давление газа в горелке. При обратном ударе газовая смесь устремляется назад, поступает в затвор через кран 4 и оттесняет воду в газоотводящую трубу и предохранительную трубку 3. Из-за понижения уровня воды в затворе нижний конец предохранительной трубки обнажается, и газы выходят в атмосферу. Щиток 2 отражает воду, выбрасываемую из затвора, и возвращает ее назад в затвор.

3. Газопламенные горелки.

Применяют для сварки и пайки и представляют собой устройства с регулируемой подачей горючего газа и окислителя для смещения горючего газа или паров жидкостей с кислородом или воздухом и получения устойчивого высокотемпературного пламени.

По способу подачи горючего газа в смесительную камеру газопламенные горелки бывают инжекторные, или низкого давления, и безинжекторные, или одинакового давления горючего газа и кислорода. В промышленности применяют преимущественно горелки инжекторного типа.

Рис.7. Инжекторная горелка

1 мундштук; 2- наконечник; 3- смесительная камера;

4 – сопло инжектора; 5 – ацетиленовый канал; 6 – вентиль

В инжекторной горелке горючий газ подается в смесительную камеру путем подсоса его струей кислорода, вытекающего с большой скоростью из сопла инжектора. Подача газа в смесительную камеру регулируется вентилями. В зависимости от толщины металла и способа сварки для каждого номера мундштука задаются определенные расходы кислорода и горючего газа.

В безинжекторных горелках горючий газ и кислород подаются примерно под одинаковым давлением и в течение всего времени работы, независимо от условий эксплуатации, сохраняется постоянный состав смеси.

Наиболее распространенные горелки типа «Москва» и ГС-3, предназначенные для сварки металла толщиной 0,5- 30 мм. Кроме того, для сварки металла толщиной 0,2 — 4 мм применяют сварочные горелки малой мощности типов ГС-2, «Малютка», «Звездочка».

Горелка газовая предназначена для правильного смешивания кислорода с горючим газом, подачи горючей смеси к месту сварки и создании концентрированного пламени требуемой мощности. Сварочные горелки по принципу действия делятся на инжекторные низкого давления и безинжекторные среднего или высокого давления. Горелка состоит из корпуса и смесительной камеры. К смесительной камере подсоединены 2 патрубка (ниппеля) — верхний кислородный с правой резьбой и нижний ацетиленовый с левой резьбой для подсоединения к ним шлангов соответственно кислородного и ацетиленового. Разная резьба исключает возможность неправильного подсоединения шлангов. В смесительной камере расположены два вентиля: кислородный вертикальный синий и ацетиленовый горизонтальный красный. К корпусу с помощью накидной гайки крепятся сменные наконечники горелки. Они имеют номера от 0 до 6. С самым малым отверстием сопла №0, №1, №2 – для сварки очень тонких металлов. Для толстых металлов – наконечники больших размеров..

Принцип работы горелки газовой.

Оба вентили закрыты. Первым открывают кислородный вентиль на 1-2 оборота (слышится шипение), затем ацетиленовый. Кислород под давлением 2-3 кгс/см 2 , пройдя вентиль 6 попадает в сопло инжектора 4. Выходя из инжектора с большой скоростью, кислород, создает разряжение в ацетиленовом канале 5. В результате этого происходит засасывание ацетилена низкого давления (0.01-0,2 кгс/см 2 ) в смесительную камеру 3. Горючая смесь по трубке наконечника 2 идет в мундштук 1 и выходит из сопла. Сварщик воспламеняет и регулирует пламя (поворачиванием кислородного и ацетиленового вентилей), чтобы оно было голубым с красной частью в центре. По внешнему виду в пламени различают 3 зоны: ядро (800-1250 0 С), средняя зона (3150 0 С), факел (2500-1200 0 С). Сваривают средней зоной пламени за ядром (3150С). Факел пламени с высокой температурой расплавляет основной металл и пруток из присадочного материала, образуя сварное соединение.

После завершения работы, первым закрыть ацетиленовый вентиль, затем кислородный вентиль.

Для получения качественного сварного соединения необходимо правильно подобрать номер наконечника и диаметр присадочного прутка в зависимости от толщины свариваемых заготовок, а также правильно отрегулировать пламя горелки и выбрать способ сварки.

Пламя горелки регулируется в зависимости от свойств, свариваемого металла. Для сварки стали и большинства цветных сплавов применяют восстановительное пламя.

Ацетиленовая горелка: критерии выбора

Ацетиленовая сварка — самый популярный метод газопламенной сварки. Это вызвано ее простотой в эксплуатации, низкой ценой исходников для выработки ацетилена и доступный набор оборудования. Такая технология позволяет достичь хорошее качество соединений, даже при монтаже самых сложных и ответственных сооружений, например тепловых и атомных электростанций. Ацетиленовая горелка — специальная конструкция, в которой происходит смешивание газа с кислородом из воздуха, при этом образуется мощное сварочное пламя. Именно это обстоятельство позволяет, на протяжении вот уже нескольких десятилетий, считать ацетиленовое оборудования одним из основных инструментов газосварщика.

Устройство и принцип работы

Газовая сварка – соединение деталей из металла под воздействием пламени с высокой температурой, благодаря чему на их поверхностей образуются сварочные ванны. Пламя получается при горении ацетилена с катализатором О2 и образованием горячей факельной струи. Такая горелка также имеет высокую функциональность по резке металлов.

  1. Газ и кислород поступают по своим каналам в горелку, где смешиваются, образовавшийся газ выходит через откалиброванное сопло наконечника ацетиленовой горелки.
  2. Газотопливную смесь поджигают, после этого образуется факел, размеры которого устанавливают с помощью регулирующих кранов (вентилей).
  3. Ацетиленовое пламя формируется из 3-х частей: ядро, с самой высокой Т, восстановления и факела. Процесс сварки происходит во второй и третьей частях.
  4. Открытое высокотемпературное пламя предохраняет сварочную поверхность от контактов с воздушным окислителем.
  5. Сварка начинается с нагрева кромок деталей, далее происходит их оплавление и соединение. Процесс требует большого расхода газа, для создания высокотемпературного режима.
  6. Другой этап — наплавка с применением мягкого металлического присадочного прутка, насыщающего сварочную ванну у кромок.

Как выглядит ацетиленовая горелка

  • Пропановый баллон;
  • кислородный баллон, подающий О2 являющейся катализатором процесса горения;
  • шланги;
  • газовая горелка: трубка из бронзы, 2-х регуляторов для каждого газового баллона, откалиброванная форсунка для тонкого распыла газовой среды под давлением.

Плюсы и минусы

Самым главным достоинством этого вида сварки является автономность, поэтому отсутствует необходимость в источнике тока, что особо приемлемо при выполнении монтажно-строительных работ на площадках, где отсутствует электроэнергия.

Преимущества ацетиленовой сварки:

  1. Возможность регулирования расстояния до свариваемой поверхности и рабочих режимов, что позволяет исключить брак в виде прожогов, даже в случае соединения тонких металлических листов.
  2. Мобильность перемещений и транспортировка по монтажно-строительной площадке.
  3. Надежность и высокое качество производимых работ.
  4. Контроль за процессом сварки.
  5. Возможность выполнения неповоротного шва, вблизи препятствий, например, стены без необходимости осуществления операционного стыка.
  6. Создание неразъемных металлических соединений с различными температурами точек плавления.
  7. Настройка силы и размера сварочного пламени.
  8. Повышение качества шва с применением легирующей стальной проволоки.
  9. Устранение процессов возникновения деформационных сдвигов конструкции и стыка, путем регулировки температурного режима нагрева, тем самым достигая расчетный режим сваривания металлов.
  10. Низкая стоимость оборудования и расходников для устройства.

Недостатки при использовании мини ацетиленовой горелки:

  1. Работы могут выполнять только обученные и аттестованные работники.
  2. Низкая производительность работ по сварке.
  3. Изменение химических и структурных свойств материала на большой площади нагрева.
  4. Применение ацетилена создает высокую пожароопасность среды;
  5. Большая загазованность в месте сварочных работ.
  6. Низкокачественное пайка узлов из легированных стальных материалов.
  7. Невозможность выполнения сварки внахлёст.

Критерии выбора

Для ацетиленовой сварки используется распространённое и дешевое оборудование. Раньше газ получали в газогенераторах, но сейчас, в основном, больше используют баллонный ацетилен. Его баллон окрашен белым цветом. Для осуществления процесса окисления применяют баллонный кислород, который перевозят на тележках, особой конструкции.

Существует ряд типоразмеров горелки, маркируемых по толщине свариваемого металла. Самый малый номер – 0, а самый большой – 7. Для выполнения газопламенной обработки с использованием ацетилена применяются исключительно ацетиленовые горелки. Основным моментом в их выборе являются технические параметры выполняемой работы: толщина свариваемых изделий, химический состав материала и используемые диаметры наконечников, от которых будет зависеть размеры соединительного шва и качественность выполнения операции. В связи с чем, подбор ацетиленовой горелки выполняют с учетом требований к обрабатываемым деталям.

Ацетиленовая горелка Донмет-251

Сегодня самыми использованными горелками являются:

  1. Г2 для проведения сварки при помощи различные наконечники, от 0 до 4 размера включительно, с толщиной деталей от 0.2 до 7.0 мм и максимальной скоростью сварки до 200 мм/мин.
  2. Г3, Донмет-251 для сварки металла толщиной до 30.0 мм, с наконечниками от 2 до 7 размера и поддержанием режимного давления кислорода и ацетилена. Например, для сварки элементов толщиной от 7.0 до 11.0 мм используют наконечник No 5, с давлением кислорода от 2 до 3 кгс/см2, а ацетилена от 0.4 до 1.0 кгс/см2. При этом можно обеспечить скорость сварки до 45 мм/мин.
  3. Резак Р2А-02М “Сварог”, предназначен для резки листа из черных металлов.

Инструкция по использованию

Все работы с ацетиленовой горелки должны выполняттся обученным персоналом, аттестованного по правилам No ПБ 03-273-99 для сварщиков на работах подведомственным Госгортехнадзору России и других нормативных актов, изданных в Москве.

Этапы технологического процесса сварки:

  1. Предварительно защищают поверхность от поражения ржавчиной и коррозией, свариваемые элементы. Для этого можно использовать щетки по металлу и насадки на шлифмашину.
  2. Обезжиривают поверхность с применением растворителей, например, ТИГа, в противном случае наплавляемый слой не будет достаточно прилегать к поверхности.
  3. Выполняется запуск ацетиленовой горелки, включается полуавтомат подачи электрода и начинается процесс сварки.
  4. Устанавливают скорость дозирования электрода, в соответствии с видом металла и толщиной изделий.
  5. Проверяют работу инжекторной системы оборудования, к кислородному входу, присоединяю шланг редуктора и повышают давление до режимного значения. При прохождении О2 через инжектор, в тракте ацитилена будет возникать разрежение. Его можно проверить, приложив палец к ниппелю, после чего и присоединяют два шланга, поджигают образовавшуюся смесь и регулируют размер пламени.
  6. После завершения работ сначала закрывают краном ацетиленовый сосуд, а после чего кислородный, иначе произойдет удар огня в шланг с возможным взрывом.

Мероприятия по пожарной безопасности:

  1. Работая с баллонами требуется соблюдать строгие мер безопасности: не оставлять их без присмотра, не размещать рядом с горячими источниками, с О2 и другими легковоспламеняющими газами. Хранение сосудов осуществляют вертикально.
  2. Перед началом сварки в помещениях, выполняют тщательную вентиляцию до, во время и после ее сварки.
  3. До производства работ оформляют все необходимые допуски, особое внимание уделяют выполнению мероприятиям для предотвращения возникновения огня от расплавленного шлака, например, когда рядом расположены легковоспламеняемые вещества или материалы, в виде деревянных конструкций.
  4. С целью защиты от ожогов используют спецодежду и пожарозащитные ширмы.
  5. Нужно проявлять повышенное внимание при зажигании дуги и во все время ее работы.
  6. С целью защиты от металлических брызг рабочие работают с полностью застегнутой спецодеждой, в частности, с воротом и рукавами, и в термостойких рукавицах.
  7. Для предупреждения возможного взрыва при сварочных работах в замкнутом пространстве выполняют комплекс дополнительных работ по подготовке рабочего места.
  8. Применение специальных респираторов «Снежок», для защиты органов дыхания от вредных веществ.
  9. При выполнении сварочных работ на высоте требуется применять спец. защитные средства: монтажный пояс и страховку.
  10. Запрещено выполнение работ без напарника, который при несчастном случае должен прийти на помощь.

Работая с ацетиленовой горелкой необходимо строго соблюдать правила безопасности

Применение ацетиленовой горелки при выполнении сварочных работ, на протяжении многих десятилетий подтвердило ее значимость, благодаря этому виду соединения монтажных изделий города получили инфраструктуру, а в дома горожан пришли свет, вода и газ. Несмотря на все сложности и опасности такого варианта пайки, при строгом соблюдении технологических режимов получается надежное соединение, сохраняющее свою прочность долгие годы.

Горелки сварочные

В зависимости от сущности процессов газопламенной обработки применяется соответствующая технологическая аппаратура.

Для процессов, связанных с нагревом материалов до той или иной рабочей температуры (пламенная закалка, огневая правка, поверхностная очистка, местная деформация, огневое бурение); а также для процессов образования соединений (сварка плавлением и газопрессовая, пайка, наплавка, сварка пластмасс) в качестве технологической аппаратуры применяются так называемые горелки, основными узлами которых являются устройства для смешения кислорода и горючего в требуемом соотношении, а также для регулирования состава горючей смеси в некоторых пределах.

Для процессов кислородной резки всех видов и нанесения металлических и неметаллических покрытий в связи с более сложной их физико-химической сущностью применяется особая аппаратура. Резка производится ручными или машинными резаками, представляющими собой горелки с дополнительным устройством для подачи по оси пламени струи чистого кислорода в целях сжигания металла для образования разреза.

Нанесение металлических покрытий с использованием наносимого материала в виде проволоки производится металлизаторами — аппаратами, имеющими кроме специальной горелки механизм подачи проволоки и устройство для распыления плавящегося металла проволоки сжатым воздухом.

Напыление покрытий с использованием порошкообразных материалов требует применения специальных установок, в комплект которых кроме горелок особой конструкции входит также бункер для порошка, подаваемого в горелку обычно струей воздуха.

Несмотря на большое разнообразие технологической аппаратуры для газопламенной обработки ее можно подразделить на группы по некоторым общим признакам:

1) по роду горючего — для ацетилена, для газов-заменителей и для жидких горючих;

2) по способу подачи горючего в смесительную камеру — на инжекторную и безынжекторную;

3) по способу применения — на ручную и машинную.

Принципы работы инжекторной и безынжекторной аппаратуры, основные требования к ней и условия устойчивой работы рассматриваются на примере сварочных ацетилено-кислородных горелок, являющихся базовыми конструкциями для другой аппаратуры. Приводятся также основные сведения по современным типовым горелкам и их характеристики.

Принцип работы инжекторной горелки (рис. 26, а) заключается в том, что горючая смесь образуется за счет инжектирования горючего низкого или среднего давления кислородом, поступающим в горелку под давлением 0,5-4 кгс/см 2 . Кислород через ниппель 1, трубку 3 и вентиль 9 поступает в осевой канал инжектора 8 и выходит с большой скоростью в смесительную камеру 7, создавая разрежение в канале горючего, благодаря чему горючее через ниппель 2, корпус горелки 4 и вентиль увлекается в смесительную камеру, проходя снаружи инжектора 8.

Образовавшаяся горючая смесь, состав которой может в некоторых пределах регулироваться вентилями горелки, выходит из горелки через трубку наконечника 5 и мундштук 6. Давление горючего должно быть не менее 0,01 кгс/см 2 .

Принцип работы безынжекторной горелки (рис. 26, б) более простой: горючий газ и кислород поступают в горелку под примерно одинаковым давлением (не ниже 0,5 кгс/см 2 ), проходят в смесительную камеру, в которой смешиваются, и образовавшаяся горючая смесь идет на выход.

Основное значение имеют горелки инжекторного типа как более универсальные, поскольку они могут работать на горючем низкого и среднего давления, но их недостатком является некоторая неустойчивость в работе из-за изменения состава горючей смеси.

К сварочным горелкам предъявляется ряд требований:

1) небольшие размеры и вес;

2) смешение кислорода и горючего в требуемом соотношении и поддержание постоянства состава смеси в процессе работы; так, для ацетиленовых горелок соотношение объемов подаваемых газов должно быть в пределах Vк/Va = 0,8-1,5;

3) возможность изменения мощности пламени в зависимости от толщины металла;

4) для предотвращения обратных ударов пламени скорость истечения горючей смеси из горелки должна быть больше скорости ее воспламенения;

5) обеспечение регулирования состава горючей смеси в процессе работы;

6) безопасность горелки в работе.

На состав горючей смеси при работе инжекторной горелки влияют следующие факторы: нагревание наконечника, засорение мундштука и колебание давления газов перед горелкой.

Нагревание наконечника отраженным теплом вызывает повышение давления горючей смеси в его канале, что создает сопротивление для поступления следующих порций газов в смесительную камеру, в основном горючего газа, из-за уменьшения величины инжекции; в результате пламя становится окислительным. Для восстановления нормального пламени горелка должна иметь «запас» горючего, т. е. возможность увеличить подачу его путем дополнительного открывания вентиля горючего на горелке.

Засорение мундштука брызгами металла также создает сопротивление для прохождения горючей смеси и пламя также становится окислительным. В этом случае требуется очистка мундштука.

Колебание давления газов перед горелкой отражается на характере пламени в зависимости от причины изменения, например, при снижении давления кислорода уменьшается инжекция, а это вызывает, в свою очередь, уменьшение поступления горючего. Восстановление нормального пламени и требуемой мощности, характеризуемой расходом горючего в л/ч, производится дополнительной регулировкой, а при необходимости производится замена баллонов.

Если по какой-либо из названных выше причин скорость воспламенения превысит скорость истечения горючей смеси из горелки, происходят хлопки и обратные удары. Для устойчивой работы инжекторных горелок скорость истечения горючей смеси должна составлять 30-200 м/сек, что достигается определенным соотношением сечений каналов инжектора, смесительной камеры и мундштука, а также регулировкой рабочего давления кислорода в пределах от 0,5 до 4 кгс/см 2 .

Типовыми ацетиленовыми инжекторными горелками являются универсальная горелка «Москва» и малолитражная «Малютка». Общий вид горелки «Москва» с комплектом наконечников приведен на рис. 27.

Техническая характеристика сварочных горелок «Москва» и «Малютка» приведена в табл. 6. Аналогичную характеристику имеют горелки предыдущего выпуска (марок ГС и ГСМ).

Важным достоинством современных инжекторных горелок является возможность изменения мощности пламени, кроме смены наконечников, изменением рабочего давления кислорода, что позволяет получить непрерывную шкалу рабочей мощности пламени, т. е. верхний предел мощности предыдущего наконечника перекрывается нижним пределом мощности последующего. Это обеспечивает весьма плавную регулировку мощности пламени.

Безынжекторные горелки (равного давления) не нашли в отечественной практике широкого применения и в настоящее время не выпускаются.

Улучшенными конструкциями ацетилено-кислородных сварочных горелок инжекторного типа являются ГС-3А и ГС-2А, которые по сравнению с горелками «Москва» и «Малютка» являются более удобными, долговечными и надежными в работе. Техническая характеристика их по существу не отличается от приведенной в табл. 6.

Для некоторых процессов газопламенной обработки металлов, например для подогрева крупногабаритных изделий, правки, пайки твердыми припоями, а также для сварки небольших толщин стали, чугуна и цветных металлов, нашли применение горелки, работающие на жидких горючих — керосине и бензине.

В настоящее время выпускается керосиновая горелка ГКР-1-67, работающая по принципу распыления керосина кислородом с последующим испарением мелкокапельного горючего во внутренней полости мундштука от самонагрева. Такая горелка комплектуется тремя одноканальными и двумя сетчатыми мундштуками и по тепловой мощности равноценна ацетилено-кислородной горелке «Москва» с наконечниками № 3-7. Подача керосина производится из бачка БГ-63 емкостью около 5,5 л, в котором насосом создается давление воздуха, вытесняющего горючее в шланг и горелку. Расход керосина составляет от 0,3 до 3,4 кг/ч.

Для работы на газах-заменителях ацетилена применяются:

1) ацетилено-кислородные универсальные горелки, комплектуемые соответствующими инжекторами, мундштуками и смесительными камерами;

2) специальные конструкции горелок без подогрева горючей смеси, например ГЗУ-1 и ГЗМ-1;

3) специальные конструкции горелок с подогревом смеси ГЗУ-2-62 и ГЗМ-2-62 (универсальная и малолитражная).

Наиболее рациональными являются две последние конструкции, разработанные на базе серийных ацетилено-кислородных. Горелки ГЗУ-2 и ГЗМ-2 могут работать на различных заменителях ацетилена. Отличительной их особенностью является наличие компактных ввертных подогревателей, расположенных между трубкой наконечника и мундштуком.

Нагрев горючей смеси до 300-330° С производится при малом расходе газа на подогрев, равном 7-10%. Эти горелки комплектуются сменными наконечниками, номера которых по эффективной мощности равны соответствующим наконечникам универсальной ацетилено-кислородной горелки.

Проходные рабочие сечения газовых каналов по сравнению с ацетиленовыми горелками имеют увеличенные размеры.

Наконечники № 5, 6, 7 снабжены сетчатыми многосопловыми мундштуками с коническим расположением осей сопел, формирующих пламя, что обеспечивает увеличение эффективной мощности на 7-10%.

На рис. 28 показана передняя часть наконечника горелки ГЗУ-2 с подогревающим устройством.

Горелки с подогревом смеси устойчивы в работе, дают резко очерченное ядро и укороченный факел пламени, обеспечивают в 1,5-1,7 раза большую скорость нагрева и на 20-30% повышение производительности сварки по сравнению с горелками без подогрева.

Указанными горелками можно производить сварку стальных изделий толщиной до 5 мм во всех пространственных положениях шва. Производительность и качество сварки низкоуглеродистой стали толщиной до 3 мм присадочной проволокой Св-12ГС близки к этим показателям при ацетилено-кислородной сварке. Сварка стали толщиной более 5 мм пропано-бутано-кислородным пламенем нерациональна вследствие значительного отвода тепла в металл.

Наконечники № 5, 6, 7 с сетчатыми мундштуками могут быть использованы для сварки чугуна и местного подогрева изделий.

Для сварки цветных металлов и некоторых наплавочных работ для получения высококачественных соединений требуется равномерная подача флюсов, что может быть обеспечено только при применении специальных установок.

Установка КГФ-2-66 обеспечивает подачу в пламя парообразного флюса, получаемого из легкоиспаряющейся жидкости специального состава. Так, флюс марки БМ-1 состоит из 75,5% тетраметилбората (СН30)3В и 24,5% метанола (СН3ОН). Температура кипения этой жидкости 54° С.

Установка может применяться для сварки меди, никеля и их сплавов (например, латуни, монель-металла), для наплавки латуни на черные металлы, для пайки мягкими и твердыми припоями. В комплект установки входят флюсопитатель и осушитель.

Флюсопитатель представляет собой прибор для насыщения флюсом БМ-1 ацетилена, подаваемого в сварочную горелку. Пары флюса, попадая в пламя горелки, сгорают с образованием флюсующего вещества — борного ангидрида (В23).

Автор: Администрация

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector