1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Контроль пламени газовой горелки котла

Контроль пламени газовой горелки котла

Кравцова Виталия Николаевича.

Представленные конструкции уникальны

и разработаны только автором

Устройства контроля погасания горелки для газовых приборов.

Газовое оборудование значительно улучшает качество нашей жизни — это возможность приготовить пищу и обогреть жильё, но газ требует к себе повышенного внимания. При случайном погасании пламени конфорки газовой плиты или горелки отопительного котла — а это может случиться, когда конфорку заливает кипящая жидкость из кастрюли или пламя задуло сквозняком — газ может заполнить помещение и достаточно небольшой искры, чтобы случился взрыв. Этого не случится, если ваши газовые приборы оборудованы системой безопасности Gas Control , которая состоит из термоэлектрического датчика, располагаемого в пламени горелки и защитного электромагнитного клапана. При наличии пламени на горелке термоэлектрический датчик, а попросту термопара, вырабатывает небольшое напряжение, которое подаётся на катушку электромагнитного клапана и обеспечивает его удержание в открытом положении. При погасании пламени термопара остывает, ток прекращается и клапан отпускает, перекрывая газ. Некоторые модели газового оборудования содержат схемы автоматического повторного розжига горелки при её погасании, но после нескольких попыток такие схемы автоматически отключаются, т.к. такой авторозжиг может повлечь большие неприятности. Если газовая плита не оснащена заводской системой безопасности — изготовить её в домашних условиях вряд ли удастся. Можно только оснастить её системой контроля пламени с выдачей предупредительной сигнализации.

Для контроля пламени в котлах промышленных котельных чаще всего используют инфракрасные или ультрафиолетовые фотодатчики и ионизационные контрольные электроды. Хотя схема с использованием фотодатчика наиболее универсальна (контролирует горение любых видов топлива), она мало подходит для «домашнего» применения, т.к. электрическая схема достаточна сложна. Фотодатчик не должен реагировать на иные источники излучения, кроме пламени горелки и чувствительность его не должна меняться от температуры и прямой засветки от посторонних источников . Чтобы этого не случилось, в схеме используется глубокая АРУ, стабилизация рабочей точки фотодатчика, а также низкочастотный полосовой фильтр, пропускающий только пульсации сигнала, формируемые языками пламени. Для самостоятельного изготовления гораздо лучше подходит ионизационный метод. Он широко используется в промышленных котельных, работающих на газе. Устройство представляет собой контрольный электрод из нихромовой проволоки диаметром 2 … 3 мм , закреплённый на изолирующей подставке из керамики или фторопласта, недалеко от горелки. Кончик электрода должен находиться в верхней трети языка пламени, но не должен касаться дна кастрюль. На контрольный электрод подаётся абсолютно безопасный, очень слабый сигнал переменного тока напряжением 220 В. При горении газового пламени происходит ионизация частиц газа и в зоне контрольного электрода , когда на нём положительная полуволна напряжения , тяжёлые положительно заряженные частицы опускаются к горелке, а электроны устремляются к электроду. В цепи протекает очень слабый электрический ток . При отрицательной полуволне тока в цепи нет . Из-за несимметричности токов на контрольном электроде возникает слабый отрицательный потенциал напряжением 3 … 8 В, который усиливается усилителем на полевом транзисторе и используется для сигнализации наличия пламени. Схема одного из устройств приведено на рисунке:

На основе этой схемы можно построить различные устройства контроля пламени и автоматической отсечки газа . Если в схему добавить триггер — можно автоматизировать запуск схемы сигнализации погасания пламени при первом его появлении . Добавив в схему таймер, можно автоматизировать начало отсчёта времени приготовления продукта или периодически включать напоминающий звуковой сигнал для забывчивых людей. Автор разрабатывал множество подобных устройств, но ввиду их относительной сложности они не здесь приводятся .

Приборы контроля наличия пламени.

Методы контроля наличия пламени при сжигании в топках котлов газа и жидкого топлива можно подраз­делить на две разновидности: прямого и косвенного контроля. К методам прямого контроля относятся ультразвуковой, термометрический, ионизационный и наиболее часто применяемый фотоэлектрический. К ме­тодам косвенного контроля горения топлива можно от­нести контроль за разрежением в топке, за давлени­ем топлива в подающем трубопроводе, за давлением или перепадом его перед горелкой и контроль за на­личием постоянного источника воспламенения.

В отечественных отопительных котлах, газовых ка­лориферах и малых газовых нагревателях применяют приборы, которые основаны на ионизационном, фото­электрическом и термометрическом методах контроля. Ионизационный метод контроля основан на электриче­ских процессах, возникающих и протекающих в пламени. К таким процессам можно отнести способность пламени проводить ток, выпрямлять переменный ток и возбуждать в электродах, помешенных в пламя, соб­ственную э.д.с., а также периодическую пульсацию электрических колебаний в пламени, что во всех случаях обусловливается степенью ионизации пламени.

Фотоэлектрический метод контроля за горением жид­кого топлива заключается в измерении степени види­мого и невидимого излучения пламени фотодатчиками как с внешним, так и с внутренним фотоэффектом. Ме­тоды контроля наличия пламени нашли много конструктивных решений.

Термоэлектрический метод контроля. Устройство, основанное на термоэлектрическом методе контроля, состоит из термопары — датчика и электромагнитного клапана. Термопара помещена в зоне горения запаль­ной горелки котла, а электромагнитный клапан уста­новлен на газопроводе, по которому подается газ в запальную горелку.

Большое распространение получило устройство тер­моэлектрического контроля, разработанное институтом Мосгазпроект. Оно применяется в отопительных и пи­щеварочных котлах, газовых отопительных печах и емкостях водонагревателей. Принцип работы термо­электрического устройства контроля пламени заклю­чается в следующем. Запальная горелка действует постоянно, обеспечивая надежное зажигание и работу основных рабочих горелок. Газ на запаль­ной горелке воспламеняется от термопары и обес­печивает защиту против отрыва пламени. Термопара вырабатывает э.д.с., за счет которой удерживается в открытом состоянии электромагнитный клапан.

При погасании пламени горелки температура тер­мопары понизится настолько, что возбуждаемая ею э.д.с. будет недостаточна для удержания якоря в открытом положении, в результате чего клапан под действием пружины закроет поступление газа в запальник и горелку котла. Последующий розжиг котла может быть произведен только вручную после ликвидации причин, вызванных отключением по­дачи газа.

Ионизационный метод контроля. Ионизационный ме­тод наличия пламени основан на использовании элек­трических свойств пламени. Устройства безопасности, основанные на этом методе, обладают преимуществом, состоящим в том, что они практически безынерционны,так как при погасании контролируемого пламени ионизационные процессы прекращаются, и это приводит практически к мгновенному отключению подачи газа в горелки котлоагрегата. Этот метод позволил разрабо­тать приборы контроля, основанные на электропровод­ности пламени, возникновении э.д.с. пламени, его вентильном эффекте и электрической пульсации. За рубежом уделяется наибольшее внимание мето­ду контроля наличия пламени, основанному на вен­тильном эффекте.

В устройствах безопасности горения, где ис­пользуется этот метод, не наблюдается ложного сиг­нала при замыкании в цепи датчиков.В системе комплексной автоматики для отопитель­ных котлов был применен прибор контроля пламени, работа которого основана на вентильном эффекте. При наличии пламени переменное напряжение, приложенное между введенным в пламя электродом и корпусом горелки, выпрямляется.

При погасании пламени действие вентильного эффекта в межэлектродном переходе прекращается и управляющий сигнал на вход усилителя не поступает. Правая часть лампы запира­ется, реле обесточивается и дает команду на отключение газа. Аналогичное действие произойдет при за­мыкании электрода на корпус горелки.

Основным недостатком схемы прибора является то, что в ней открытое (рабочее) положение правой час­ти триода обеспечивается закрытием левой его части. Метод контроля, использующий электрический по­тенциал пламени.Этот метод основан на введении в факел металлических электродов, которые дают раз­ность потенциалов (э.д.с.), переменных по амплитуде, но постоянных по знаку. Величина э.д.с. пропорциональна разности температур между электродами и достигает 2 В. На этом принципе был создан прибор . Принцип работы при­бора э.д.с. заключается в следующем при отсутствии пламени в анодных цепях лампы текут равные токи. Возникающий в обмотках реле Р1 и Р2 под действи­ем тока магнитный поток равен нулю, так как обмот­ки поляризованного реле включены встречно. Якорь Реле в этом случае находится в положении, при кото­ром цепь питания электромагнитного клапана-отсекателя разорвана, и газ в горелку не поступает. При появлении пламени возникает отрицательная э.д.с., которая подается на сетку левой части триода, что приводит к уменьшению тока в обмотке Р1. Под дей­ствием результирующего магнитного поля якорь реле изменит свое положение и, замкнув контакты, даст соответствующую команду. При погасании пламени или замыкании в цепи датчика э.д.с. исчезнет и схема придет в исходное положение.

Метод контроля, использующий электрическую пульсацию пламени. Для любого факела независимо от вида сжигаемого топлива и типа горелочного устрой­ства характерным признаком является пульсация про­цессов, сопровождающих горение. К таким процессам относятся температура пламени, давление в камере сгорания, интенсивность излучения и ионизация факе­ла пламени. Частота и амплитуда пульсаций зависят от скорости истечения газовоздушной смеси из го­релки и условий перемешивания газа с воздухом. При неудовлетворительном перемешивании газа с воздухом горение сопровождается отдельными вспышками. Пос­редством чувствительного гальванометра можно за­мерить величину пульсации ионизационного тока. Это свойство пламени дает возможность обеспечить самоконтроль автоматики от опасного замыкания в цепи электродного датчика.

В схеме используется собственный пульсирующий потен­циал, возникающий на электродах. При включении в цепь ионизационного датчика источника постоянного тока пульсацию на электродах можно усилить. В лю­бом случае при замыканиях в цепи датчика, а также при погасании пламени подача управляющего сигнала на вход усилителя прекращается, и автоматика сраба­тывает на отключение газа. От сигнала постоянного тока данная схема не работает, так как на входе пер­вого каскада включен конденсатор. Приборы контроля пламени этого типа, работающие на переменной сос­тавляющей электрического сигнала, очень чувстви­тельны к помехам, частота колебания которых близ­ка к частоте пульсации факела. Вследствие этого при установке таких приборов на объектах требуется обя­зательная экранировка входных цепей усилителя и ли­ний связи, соединяющих электродный датчик с прибо­ром.

Термопара газовой горелки: как снять, заменить и установить датчик пламени котла?

Главная страница » Термопара газовой горелки: как снять, заменить и установить датчик пламени котла?

Термопара (датчик силы пламени газовых горелок) — это устройство управления потоком газа, которое используется в конструкциях газовых бытовых котлов. Устаревшие системы бытовых водонагревателей с постоянно функционирующими вспомогательными горелками оснащаются устройством контроля — термопара. Бойлеры нового типа, где применяется электронное зажигание, оснащаются аналогичным устройством, которое в технической документации упоминается как датчик пламени.

Краткое описание элемента бойлера термопара

Датчик термопара является неотъемлемой частью узла газовой горелки бытового котла. Подключается датчик непосредственно на газовый клапан-регулятор. Технически термопара представляет простое устройство, преобразующее тепло, выделяемое газовой горелкой в электрический ток малой величины.

Ток термопары действует фактически как сигнал управления газовым потоком, что реализуется посредством клапана подачи газа. Другими словами: когда датчик находится не под действием выделяемого тепла, подача топлива на горелку попросту блокируется газовым клапаном.

Таким выглядит классическое исполнение термопары газовой колонки – бытового водонагревателя. Это новый, ещё ни разу не использованный экземпляр. Такой обычно нужен на замену старого – дефектного компонента

Следовательно, термопара газовой горелки выступает ключевым элементом безопасности оборудования, составляющего водонагревательную бытовую систему. Нередко дефектная термопара становится причиной, в результате которой источник горения газа водонагревателя не действует или даёт кратковременное горение.

Постоянный факел и электронное зажигание

Очевидный момент — типичным исполнением системы зажигания газового бытового котла определяется технология замены термопары. Независимо от типичного исполнения системы зажигания (простая, электронная), датчик пламени остаётся неизменной частью узла бойлера.

Конфигурация элементов поджига и контроля на бойлерах устаревших моделей: 1 – пилот, обеспечивающий постоянный «дежурный» факел; 2 – термопара, заключённая в металлический кожух

Вариант постоянного пилота предполагает наличие только горелки и термопары, закреплённые на горелочном узле. Вариант электронного зажигания отличается тем, что на горелочном узле монтируются:

  • пилот (факел),
  • датчик тепла,
  • термоэлемент,
  • электронный воспламенитель.

Если владельцу газовой колонки сложно определить типичное исполнение системы зажигания, сделать это можно по наличию «дежурного» огня. Постоянные системы зажигания имеют вспомогательную «зажигалку», которая всегда горит небольшим «дежурным» огнём (при наличии газа в системе). Если же используется электронный вариант зажигания, «дежурное» пламя загорается только от сигнала термостата.

Подготовка системы и демонтаж узлов

Блокировка подачи топливного ресурса (природного газа) на бытовой котёл – это первое, что требуется сделать перед началом работ с бойлером, независимо от особенностей конструкции системы.

Подготовка демонтажа: 1 – точка подключения термопары на регулирующем клапане бойлера; 2 – тока подключения пилота (факельной лампы); 3 – электропроводка пъезоэлемента; 4 – подвод газового топлива к регулирующему клапану

Пошаговый процесс ремонта выглядит следующей последовательностью:

  1. Установить газовый клапан бойлера в положение «отключено».
  2. Закрыть запорный кран трубопровода подачи газа.
  3. Снять крышку узла источника пламени или крышку коллектора (для схемы с электронным зажиганием).
  4. Использовать разводной или гаечный ключ для соединений термопары.
  5. Выполнить отключение трубок подачи на основную и вспомогательную горелки (пилота) от регулирующего клапана. Для систем электронного зажигания также отключить проводник пьезоэлемента.

Демонтаж на бойлере с электронным зажиганием

Камера сгорания водонагревателей, где применяется электронное зажигание, как правило, имеет герметичную крышку. Для доступа в эту область необходимо демонтировать крышку коллектора узла источника пламени. Тогда мастеру откроется к доступу:

  • трубка подачи газа на источник пламени,
  • основной источник пламени,
  • электронное зажигание,
  • пилот (факел),
  • термопара.

Нужно выполнить следующую последовательность действий для демонтажа крышки коллектора:

  1. Снять крепления крышки коллектора узла источника пламени. С учётом марки и модели бойлера, закрывающая коллектор панель может иметь крепление винтовое, гаечное или специальное нестандартными крепёжными элементами.
  2. Ухватить трубку подачи горелки, слегка нажать, тем самым освобождая коллектор, направляющую трубку, соединения термопары.
  3. Аккуратно снять коллектор источника пламени, не допуская повреждения внутренних компонентов. Если горелка не поддаётся демонтажу, проверить наличие дополнительных крепёжных винтов.
  4. Осторожно снять старую прокладку по периметру крышки коллектора, будучи в хорошем состоянии, прокладка допускает повторное использование (иначе нужна замена).
  5. Очистить места примыкания крышки к области основания.

После демонтажа узел горелки бойлера, где используется электронный поджиг, визуально выглядит как на картинке ниже:

Узел источника пламени с электронным зажиганием: 1 – устройство распределения пламени; 2 – пилот; 3 – электронный воспламенитель; 4 – термопара (установка по месту); 5 – термопара (демонтированная из кронштейна)

По завершении работ демонтажа, естественным образом встаёт вопрос проверки снятого элемента контроля на работоспособность. Уже отталкиваясь от результатов тестирования термопары, внешнего состояния и срока службы, мастер делает соответствующий вывод относительно замены этой детали.

Как проверить работоспособность датчика пламени?

Если визуальный осмотр датчика показывает удовлетворительный результат, дальнейшее тестирование на работоспособность заключается в проверке выходного сигнала термопары. В данном случае выходным сигналом является напряжение, формируемое на концевой (подключаемой к регулирующему клапану) головке датчика ( 9 ). Где находится головка и прочие элементы датчика, показывает схема ниже:

Схематичный расклад компонентов: 1 – рабочая область термопары; 2 – горячий спай; 3 — металл одного типа; 4 – металл другого типа; 5 – холодный спай; 6 — гибкая медная трубка с изолированным проводом внутри; 7 – соединительная гайка; 8 – изолятор; 9 – лужёный разъём

Для тестирования датчика пламени необходимо измерительный прибор (аналоговый стрелочный или цифровой) подключить одним контактным зажимом непосредственно на медную трубку ( 6 ), вторым – к лужёному разъёму ( 9 ). Тестер включить в режим измерения напряжения (в диапазоне милливольт).

Пример подключения концевой соединительной головки к тестеру (аналоговому или цифровому) для выполнения тестирования термопары газового котла на работоспособность

Далее потребуется нагреть область термопары ( 1 ) при помощи любого, имеющегося под руками, источника тепла. Например, обычной зажигалкой или парафиновой свечой. Работоспособный элемент покажет на измерительном приборе значение напряжения около 8-30 мВ. Если же показания меньше или равны нулю, датчик пламени неисправен и требует замены.

Процедура замены термопары новым экземпляром

Неспешно, с применением усилия и небольшой вращательной амплитуды, вытянуть старую термопару из посадочного отверстия кронштейна. При этом следует постараться не согнуть и не деформировать соединение пилота с кронштейном датчика пламени.

Читать еще:  Датчик контроля пламени: устройство и принцип работы

Полностью удалить старый датчик пламени, вытянув этот элемент через отверстие крышки с уплотнительным кольцом и резиновой втулкой. Либо открыть крышку коллектора на узле источника пламени. При необходимости допускается отрезать старую термопару для упрощения демонтажа.

Не рекомендуется сразу же выбрасывать удалённый экземпляр, так как этот компонент газовой горелки пригодится для точного подбора новой термопары. Также рекомендуется приобрести новую уплотняющую прокладку под крышку коллектора.

Установка нового датчика пламени по месту

  1. Пропустить новую термопару сквозь втулку (отверстие) крышки коллектора. Вставить термопару в отверстие монтажного кронштейна до упора, до полной усадки или фиксации на месте.
  2. Расположить наконечник датчика пламени с учётом охвата пилотным пламенем верхней части наконечника на 9 — 12 миллиметров не более и не менее.
  3. Заменить прокладку крышки коллектора новой или использовать старую, если пригодна к эксплуатации.
  4. Поместить источник пламени в область камеры сгорания и установить по проекту.
  5. Закрыть крышку.

Замена термопары на устаревших моделях бойлеров

Для устаревших моделей водонагревателей, где применяется постоянное «дежурное» пламя, демонтаж и замена датчика пламени выглядит просто. Как только:

  • трубка пилота (факела),
  • трубка основного источника пламени,
  • термопара,

отключены от клапана-регулятора подачи газа, достаточно приподнять и далее снять узел горелки с места установки. Дальнейшие действия аналогичны тем, что описаны для моделей с электронным зажиганием.

Заключительный штрих

После сборки узлов можно кратковременно открыть линейный газовый кран, чтобы обеспечить давление в системе. Затем газовый кран закрыть, приготовить мыльный водный раствор и проверить на утечки все точки газовых соединений, которые были затронуты. Если утечки отсутствуют, нагревательное оборудование допустимо эксплуатировать. В ином случае утечки следует устранить.

Датчики контроля пламени — один из важнейших факторов безопасной работы котельной

О.В. Полтавцев, коммерческий директор,
ООО Конструкторское бюро «АГАВА», г. Екатеринбург

Введение

В котлоагрегатах, при сжигании газа или жидкого топлива, пламя в зоне горения не всегда отличается устойчивостью: в некоторых ситуациях может произойти его отрыв, что создает угрозу взрыва в топке. Поэтому котельное оборудование в обязательном порядке оснащается системой контроля пламени.

Однако, присутствующие на рынке современные системы обнаружения пламени обладают рядом недостатков, в частности, такими, как: конечная надежность и достоверность обнаружения пламени или его отсутствия, низкая селективность, чувствительность к посторонним засветкам. Существенным фактором также является высокая стоимость некоторых приборов, что особенно актуально для объектов ЖКХ. Поэтому так важно в этой сфере появление недорогих, но отвечающих всем современным требованиям, приборов.

ООО КБ «АГАВА», опираясь на двадцатилетний практический опыт работы по автоматизации тепловых агрегатов (котлов, топок, печей) и разработке КИПиА для этой отрасли, предлагает именно такое решение: качественную, надежную систему контроля пламени по разумной цене. При создании этого прибора были учтены все требования безопасности, предъявляемые к теплогенерирующему оборудованию.

Датчики-реле контроля пламени АДП-01

Назначение датчика-реле контроля пламени АДП-01 (рисунок) — фиксировать наличие пламени в топке котла, а в случае его исчезновения — формировать сигнал для автоматики защиты.

Рисунок. Датчик-реле контроля пламени АДП-01.

В корпусе небольшого прибора (габаритные размеры датчика составляют 98×56 мм, вес — 125 г) находится печатная плата, на которой смонтированы электронные компоненты. На задней крышке корпуса расположены три светодиода, выходной разъем и переменный резистор, предназначенный для регулировки чувствительности прибора. На передней части корпуса находится чувствительный элемент.

Принцип действия основан на преобразовании излучения и пульсации пламени в электрический сигнал с помощью чувствительного элемента, который после обработки сравнивается с заданным пороговым уровнем. При превышении порога формируется выходной сигнал. Если сигнал больше порогового уровня, на датчике горит зеленый светодиод, если меньше — зажигается красный светодиод: это знак, что пламя отсутствует, а газ подается. Остальные светодиоды служат индикаторами интенсивности пламени.

Для подключения к системе автоматизации каждый датчик снабжен выходом одного из двух типов: это может быть открытый коллектор или контакты реле. Для предотвращения перегрева прибора и, соответственно, выхода его из строя, при установке дополнительно предлагается специальный фланец.

Датчики серии АДП-01 выпускаются уже несколько лет. К настоящему моменту в линейку входят 9 приборов, различающихся, в первую очередь, чувствительными элементами. Это оптические сенсоры (фотодиоды и фоторезисторы), ионизационный сенсор и последняя разработка — ультрафиолетовый сенсор.

Датчики пламени АДП-01.9 и АДП-01.10

Новые модификации датчиков пламени с чувствительным элементом, реагирующим на ультрафиолетовое излучение, были разработаны специально по просьбам проектировщиков и наладчиков, часто сталкивающихся с проблемами настройки режимов горения теплогенерирующего оборудования.

Дело в том, что оптические сигнализаторы пламени, которые имеют в качестве сенсора фотодиоды и фоторезисторы, оказались очень чувствительны к пульсации факела. В 90% случаев такой принцип действия себя оправдывает, однако иногда бывает, что факел гаснет, а оптический датчик все равно показывает наличие пламени, потому что он регистрирует ложные пульсации, оставшиеся из-за колебаний горячего воздуха или дымовых газов на фоне раскаленной стенки топки. При этом ультрафиолетовое излучение характерно только для процесса горения газа и полностью отсутствует у раскаленных элементов конструкции топки.

Кроме того, для котлов с тремя и более горелками одним из главных требований, предъявляемых к системе контроля пламени, является селективный (индивидуальный) контроль факела. Это означает, что датчик, смонтированный на одной горелке, не должен реагировать на возникновение, погасание или отрыв пламени на остальных горелках, поскольку может привести, как минимум, к хлопку газа в топке, а как максимум — к масштабной аварии котла или всей котельной.

Поскольку ультрафиолетовые приборы практически не реагируют на посторонние засветки в видимой части спектра, при использовании датчиков пламени АДП-01.9 и АДП-01.10 вероятность «срабатывания» прибора от работы «чужой» горелки снижается, что повышает надежность и безопасность работы котельного агрегата.

Приборы линейки АДП-01 с ультрафиолетовым датчиком являются универсальными и могут применяться для любых газовых горелок и запальников, в т.ч. для котлов и печей с эффектом «светлой топки» и повышенными требованиями к селективности.

Следует добавить, что стоимость этих приборов из линейки АДП-01 сегодня составляет немногим более 7 тыс. руб.

чувствительного

Может использоваться для газовых и жидкотопливных горелок, цвет пламени которых находится в диапазоне от голубого до красного.

Может использоваться для газовых и жидкотопливных горелок, цвет пламени которых находится в диапазоне от голубого до инфракрасного.

Предназначен для газовых горелок, центр спектра пламени которых лежит в области голубого цвета.

Реагирует на поток ультрафиолетового излучения, характерного только для процесса горения газа.

Не реагирует на внешние засветки и излучения раскаленных поверхностей топки.

В таблице приведены рекомендации по применению всех датчиков пламени серии АДП-01, на основании которой можно подобрать оптимальное оборудование. ■

Особенности датчиков пламени горелки

Бытовые и промышленные приборы, работающие на сжиженном или природном газе должны в обязательном порядке оборудоваться датчиком наличия пламени. Отсутствие горения может привести к тому, что газ начнет поступать в окружающее пространство. Это чревато пожаром или взрывом.

Конструктивные особенности

Для предотвращения опасных ситуаций разработаны специальные датчики, которые отслеживают наличие процесса горения газа в устройстве. По конструкции датчики пламени существуют нескольких типов, использующие разные принципы контроля процесса горения. Наибольшее распространение получили следующие:

  • Фотоэлектрические;
  • Термопары;
  • Ионизационные.

Каждый из перечисленных типов имеет как достоинства, так и недостатки.

Фотоэлектрические

В время горения происходит излучение светового потока, который регистрируется фоточувствительным элементом конструкции. В спектре пламени присутствует излучение всего спектра, поэтому разработаны устройства, реагирующие на:

  • Видимое излучение;
  • Ультрафиолетовой излучение;
  • Инфракрасное излучение;
  • Комбинированные.

Наиболее просты по конструкции инфракрасные датчики. Главный недостаток заключается в том, что инфракрасное излучение испускают все нагретые тела, поэтому велика вероятность ложных показаний при отсутствии пламени от нагретых стенок и элементов газового котла.

Датчики, реагирующие на видимое излучение могут давать ложное срабатывание от посторонней засветке и не могут работать при открытой камере сгорания.

Наиболее надежны ультрафиолетовые датчики, но доля ультрафиолетового излучения в пламени невелика, поэтому приходится применять меры по повышению чувствительности фотоэлемента. Наиболее распространено использование фотоумножительных конструкций. Увеличение надежности контроля достигается применением чувствительных элементов, реагирующих сразу на несколько частей спектра излучения.

Все фотодатчики обладают следующими недостатками:

  • Большие размеры, накладывающие ограничения по применению в малогабаритных конструкциях;
  • Нахождение чувствительного полупроводникового элемента вблизи нагретой зоны котла;
  • Малый срок службы фотоумножителя;
  • Сложность обвязки (электронной схемы);
  • Резкое снижение чувствительности (отсутствие срабатывания при нормальных условиях) при наличии пыли и загрязнений на поверхности датчика.
  • Возможность размещения за пределами камеры сгорания;
  • Высокая надежность в пределах срока службы.

К фотоэлектрическим относится широко распространенный датчик наличия пламени ДП1.

В зависимости от варианта исполнения (модификации)и схемы блока сигнализации датчик пламени ДП1 имеет различающиеся характеристики по типу установки, температурным характеристикам и может использоваться в широком диапазоне устройств.

Термопары

Работа основана на свойстве спаяразнородных металлов при нагреве генерировать электродвижущую силу. Ля регистрации ЭДС достаточно чувствительного вольтметра, роль которого в электронной схеме выполняет простейший компаратор.

Среди достоинств элементов на термопаре:

  • Простота конструкций;
  • Высочайшая надежность;
  • Высокая термостойкость;
  • Нечувствительность к загрязнениям;
  • Нет необходимости в источнике питания — датчик сам генерирует напряжение.

Основной недостаток — крайне высокая инерционность, которую можно уменьшить снизив размеры чувствительного элемента, но это снижает термостойкость и срок службы. Запаздывание срабатывания вызвано временем, необходимым для снижения температуры контакта при пропадании пламени.

Стоимость датчиков контроля пламени на термоэлектрическом эффекте может быть высокой из-за необходимости применения редкоземельных металлов в сплавах для увеличения чувствительности и повышения термостойкости.

Ионизационные

Работа данных устройств основана на том, что при горении раскаленные газы находятся в ионизированном состоянии, то есть представляют собой плазму. Плазма, как четвертое состояние вещества, за счет ионов обладает высокой электропроводностью.

Конструктивно ионизационный датчик наличия пламени горелки представляет собой металлический электрод, внесенный в зону горения. Между электродом и корпусом горелки (форсунками) приложена разность потенциалов. При наличии пламени между электродом и горелкой начинает протекать электрический ток, тем больший, чем больше интенсивность горения, то есть степень ионизации нагретых продуктов сгорания. Протекающий ток регистрируется электронной схемой. Схема контроля регулируется на определенное значение тока, которое зависит от интенсивности горения. Снижение мощности пламени приводит к подаче сигнала об его отсутствии.

  • Простота;
  • Надежность;
  • Долговечность;
  • Высокое быстродействие;
  • Низкая стоимость.
  • Чувствительность к загрязнениям на поверхности электрода;
  • Ненадежность работы в среде газов, содержащих большое количество водорода или окиси углерода, поскольку в таких средах степень ионизации невелика.

К потере чувствительности приводят:

  • Загрязнение поверхности;
  • Неправильная пропорция горючей смеси;
  • Малая интенсивность горения;

Ложное срабатывание может вызвать наличие пыли на изоляции, вызывающей токи утечки.

В зоне горения электрод располагают в корне пламени, где его температура не превышает 900 ⁰С. Конструктивно датчик выполняется из хромаля, сплава железа с примесью алюминия и хрома. Изоляция в стенке камеры сгорания выполняется из высокотемпературной керамики.

Наиболее часто ионизационный датчик объединяют с запальным электродом. Во время поджига на него подаются импульсы высокого напряжения. В это время схема контроля пламени отключена. После прекращения поджига реле подключает электрод к схеме контроля. При наличии необходимой величины тока между электродом и горелкой считается, что поджиг произошел успешно, в противном случае процесс повторяется заново.

Комбинированная конструкция требует наличия высоковольтной изоляции провода, подходящего к электроду.

Использование

Перечисленные конструкции применяются не только в газовых котлах. Их используют также в металлургическом производстве для контроля за зоной плавления металла, в котлах, работающих на всех видах топлива. Это также относится и к упомянутому выше датчику пламени ДП1.

Область применения фотоэлектрических элементов определяется спектральной характеристикой. Так нагретые металлы имеют максимум излучения в инфракрасном диапазоне, а в пламени газа присутствует большая доля ультрафиолетовых лучей.

В бытовых газовых котлах наиболее часто используются ионизационные датчики, так как они имеют малые габариты, простую конструкцию и низкую стоимость.

Видео по теме

Контроль наличия пламени

Тепловые агрегаты, работающие на природном газе (печи, котлы, стенды нагрева и т.п.) должны оборудоваться системой контроля наличия пламени. В процессе работы тепловых агрегатов возможны ситуации, при которой пламя горелки (факел) потухнет, но газ будет продолжать поступать во внутреннее пространство агрегата и окружающую среду и при наличии искры или открытого огня возможно воспламенение этого газа и даже взрыв. Наиболее часто потухание пламени происходит из-за отрыва факела.

Наличие пламени контролируют либо с помощью ионизационного электрода, либо с помощью фотодатчика. Как правило, с помощью ионизационного электрода контролируют горение запальника, который, в свою очередь, в случае необходимости воспламенит основную горелку. Фотодатчиками контролируют пламя основной горелки. Фотодатчик для контроля пламени запальника не применяют ввиду малого размера пламени запальника. Применение ионизационного электрода для контроля пламени основной горелки не рационально, так как электрод, помещенный в пламя основной горелки будет быстро обгорать.

Фотодатчики различаются по чувствительности к различной длине волны светового потока. Одни фотодатчики реагируют только на видимый и инфракрасный спектр светового потока от горящего пламени, другие воспринимают только его ультрафиолетовую составляющую. Самым распространенным фотодатчиком, реагирующим на видимую составляющую светового потока, является датчик ФДЧ.

Световой поток воспринимается фоторезистором датчика, и после усиления преобразуется либо в выходной сигнал 0-10В, пропорциональный освещенности, либо подается на обмотку реле, контакты которого замыкаются, если освещенность превышает установленный порог. Тип выходного сигнала — сигнал 0-10В или контакты реле — определяется модификацией ФДЧ. Фотодатчик ФДЧ обычно работает с вторичным прибором Ф34. Вторичный прибор обеспечивает питание ФДЧ напряжением +27В, на нем также выставляются пороги срабатывания в том случае, если используется ФДЧ с токовым выходом. Кроме того, в зависимости от модификации, Ф34 может контролировать сигнал от ионизационного электрода запальной горелки, управлять розжигом и работой горелки с помощью встроенных реле.

К недостаткам фотодатчиков видимого света можно отнести то, что они реагируют на любой источник света — солнечный свет, свет фонарика, световое излучение нагретых элементов конструкции, футеровки сталеразливочных ковшей и т.п. Это ограничивает их применение, например в стендах нагрева, так как ложные срабатывания от светящейся разогретой футеровки ковшей блокируют работу автоматики (ошибка «ложное пламя»). Наиболее широко ФДЧ применяются на печах сушки песка, ферросплавов и т.п. — там где температура нагрева редко превышает 300-400°С, а значит отсутствует свечение разогретых элементов конструкции печи.

Отличительной особенностью ультрафиолетовых фотодатчиков (УФД), например UVS-1 фирмы Kromschroeder, является то, что они реагируют только на ультрафиолетовую составляющую светового потока, излучаемого пламенем горелки. В световом потоке от разогретых тел, элементов конструкций печей, футеровки ковшей ультрафиолетовая составляющая мала. Поэтому к посторонней засветке датчик «равнодушен», как и к солнечному свету.

Основой этого датчика является вакуумная лампа — электронный фотоумножитель. Как правило, питаются эти датчики напряжением 220В и имеют токовый выходной сигнал, который меняется от 0 до нескольких десятков микроампер. К недостаткам ультрафиолетовых датчиков можно отнести то, что вакуумная лампа фотоумножителя имеет ограниченный срок службы. Через пару лет эксплуатации лампа теряет свою эмиссионную способность и датчик перестает работать. Сигнал с УФД передается на автомат горения серии IFS, функции которого аналогичны функциям Ф34.

Фотодатчики должны иметь, так сказать, визуальный контакт с пламенем горелки, поэтому они расположенны в непосредственной близости от него. Как правило, они распологаются со стороны горелки под углом 20-30° к ее оси. Из-за этого они подвержены сильному нагреву тепловым излучением от стенок агрегата и радиационному нагреву через визирное окно. Для зашиты фотодатчика от перегрева применяют защитные стекла и принудительный обдув. Защитные стекла производятся из жаропрочного кварцевого стекла и устанавливаются на некотором удалении перед визирным окном фотодатчика. Обдув датчика осуществляется либо вентиляторным воздухом (если горелка установки работает на вентиляторном воздухе), либо сжатым воздухом пониженного давления. Подаваемый объем воздуха осуществляет охлаждение фотодатчика не только за счет процессов теплоотдачи, но и из-за того, что вокруг него создается область повышенного давления, которая как бы отталкивает горячий воздух, не давая ему контактировать с датчиком.

Читать еще:  Газовая горелка для котла своими руками: рекомендации по изготовлению и обслуживанию

Контроль наличия пламени запальника в большинстве случаев осуществляется ионизационным электродом. Принцип контроля пламени по ионизации основан на том, что при сжигании газа образуется множество свободных электронов и ионов. Эти частицы «притягиваются» к ионизационному электроду и вызывают протекание тока ионизации величиной в десятки микроампер. Ионизационный электрод соединяется с входом прибора контроля наличия ионизации (автоматом горения). Если при горении пламени запальника образуется достаточное количество свободных электронов и отрицательных ионов, то в автомате горения срабатывает пороговое устройство разрешающее работу (или розжиг) основной горелки. В случае если интенсивность ионизации падает ниже определенного уровня, то основная горелка отключается даже в том случае, если она работала нормально. На размещенном ниже видео показано, как благодаря нагреву воздуха между обкладками конденсатора (в нашем случае одна обкладка это контрольный электрод, другая обкладка — корпус запальника) в цепи начинает протекать электрический ток.

Основными причинами пропадания ионизации являются отсутствие требуемого соотношения газ-воздух запальника, загрязнение или обгорание ионизационного (контрольного) электрода. Еще одной причиной пропадания сигнала ионизации может являться уменьшение сопротивления между ионизационным электродом и корпусом запальника, которое чаще всего происходит из-за оседания токопроводящей пыли на запальное устройство.

Автомат горения часто выполняет не только функцию контроля наличия пламени — на нем строиться вся автоматика управления розжигом горелки, как, например, это реализовано в автомате горения ASL50P фирмы Hegwein.

Как правило, ионизационный электрод размещается вдоль оси запальной горелки, конец электрода должен находиться в «корне» пламени запальника. В некоторых запальных устройствах ионизационный электрод выполняет функцию запального электрода. В этом случае на него в течении фиксированного времени подается высокое напряжение с запального трансформатора для поджига запальника. После того как поджиг запальника произведен контрольный электрод переходит в режим контроля ионизации – цепи поджига отключаются и электрод соединяется с входом автомата горения. В этом случае возможна еще одна причина пропадания сигнала ионизации, связанная с обрывом во вторичной обмотке трансформатора. Но искра в этом случае может все равно нормально генерироваться, поэтому данную неисправность иногда трудно определить.

Большое значение для стабильной работы запального устройства имеет правильно выставленное соотношение газ-воздух. В большинстве случаев требуемые значения давления газа и воздуха приводятся изготовителем в паспорте запальной горелки. Не смотря на то, что говоря «соотношение газ-воздух» в большинстве случаев имеют в виду их объемное соотношение (один объем газа на десять объемов воздуха), но настраивают запальник, да и горелку, впрочем, тоже, по давлению, так как это сделать намного проще и дешевле. Для этого конструкцией запальника предусмотрено подключение контрольного манометра к газовому и воздушному тракту в определенных местах.

Ионизационный электрод крепиться к корпусу запальника через керамическую изолирующую втулку и соединяется с входом автомата горения экранированным одножильным кабелем. Если ионизационный электрод используется еще и в качестве запального, то с запальным трансформатором он соединяется специальным высоковольтным кабелем, например, ПВ-1. Изолирующая втулка изготавливается из керамики с большим содержанием Al2O3, которая характеризуется высокой механической прочностью, температурной стойкостью и электрической прочностью до 18 кВ . Ионизационный электрод изготавливается канталя — металлического сплава устойчивого к высоким температурам и электрохимической коррозии

Установки постоянно работающие при температурах свыше 800°С (мартеновские печи, например) могут и не оснащаться системами контроля наличия факела. Это связано с тем, что температура воспламенения газа находиться в пределах 645 – 750°С. Таким образом, в случае отрыва факела исходящий из сопла горелки газ воспламениться от разогретой кладки внутреннего пространства теплового агрегата. Очень часто перед соплом горелки выкладывают специальный горелочный камень – он воспламеняет поток газа и стабилизирует горение.

Для повышения надежности работы и уменьшения количества остановов установки из-за пропадания ионизации можно сделать контроль наличия пламени не постоянным, осуществляя его по схеме «ИЛИ». В этом случае, если установка прогрелась до температур свыше 750°С и сигнал ионизации с запальной горелки по какой то причине пропал, то основная горелка все равно продолжит работу.

Дополнительную информацию вы можете найти в разделе «Вопрос-ответ».

Качественные устройства розжига и контроля пламени — условие надежной и безопасной работы котельных установок

Решение задачи кардинального повышения безопасности работа котельных установок напрямую зависит от качества эксплуатируемого оборудования. В установках для сжигания газа, жидкого или твердого топлива одним из основных параметров, обеспечивающих безопасную работу всей установки, является контроль наличия и погасания пламени. Требования о необходимости контроля пламени и перекрытия подачи топлива, в случае его погасания, изложены в [1]. От правильного выбора устройств контроля пламени (типа датчика пламени в зависимости от вида топлива и излучаемого его факелом спектра, места установки и направленности на объект горения, типа, количества и расположения горелок, совершенства вторичных сигнализирующих приборов) решающим образом зависит надежность работы системы защиты котельной установки в целом. Эти вопросы особенно актуальны для старых котельных, возраст которых составляет несколько десятков лет, автоматика которых физически и морально устарела и требует замены. Неправильный выбор датчика пламени или его некорректная установка могут в итоге привести к несанкционированной остановке котла. Не менее важным является безаварийное проведение одного из самых ответственных этапов работы теплоэнергетических установок – розжига котла или печи, что обеспечивается применением надежных в работе запально-защитных устройств. Поэтому оборудование для этих целей должно быть изготовлено и испытано в соответствии с действующими стандартами и правилами и только на предприятиях, имеющих большой опыт работы в данной отрасли.

Научно-производственное предприятие «ПРОМА», как ведущий российский разработчик и изготовитель котельной автоматики, и Научно-производственная фирма «РАСКО» – как его официальный представитель, более 20-ти лет специализирующийся на комплектных поставках энергосберегающих приборов и газорегуляторного оборудования, совместно предлагают современный комплекс средств котельной автоматики, включающий в себя датчики первичной информации, устройства розжига, приборы контроля пламени и микропроцессорные блоки управления режимами горения.

Отличительной особенностью НПП «ПРОМА» является комплексный подход, заключающийся в разработке и производстве широкого спектра приборов и оборудования, обеспечивающий надежный и безопасный розжиг, контроль пламени и управление режимами горения, от начала проектирования до серийного выпуска и сервисного обслуживания. Серийно выпускаемые приборы контроля факела и новые разработки НПП «ПРОМА» ориентированны именно на котлы и горелки, эксплуатируемые в России и других странах СНГ, и полностью удовлетворяют всем требованиям потребителей различных отраслей промышленности как по видам топлива, спектральным характеристикам, селективности, так и по надежности [2].

Приборы контроля факела включают в себя датчики пламени, сигнализаторы горения и сигнализирующие датчики.

По методу контроля пламени различают фотодатчики, использующие принцип светового излучения, и ионизационные датчики, работающие за счет изменения электрической проводимости пламени. В зависимости от выделяемых из светового излучения спектральных характеристик фотодатчики бывают инфракрасного, видимого и ультрафиолетового спектра излучения. Принцип действия всех фотодатчиков основан на преобразовании светового потока от горения факела в унифицированный электрический токовый сигнал 4-20 мА.

Сигнализаторы горения – это вторичные приборы, принимающие сигнал от датчика пламени и вырабатывающие аналоговый или релейный сигнал о наличии/отсутствии пламени на исполнительное устройство.

Сигнализирующие датчики совмещают в себе функцию датчика пламени и сигнализатора горения, объединенных в одном корпусе.

Спектральные характеристики пламени зависят от вида используемого топлива. Для природного или сжиженного газа преобладают ультрафиолетовое (УФ) и инфракрасное (ИК) излучение. Для жидкого топлива (дизельное топливо, мазут, нефть) преобладает ИК-излучение, для твердого топлива (угольная пыль, бурый уголь, дрова) — ИК и видимое излучение.

При выборе фотодатчика следует учитывать фактор фонового излучения, присутствующий в топке и влияющий на надежную работу фотодатчиков. К фоновым излучениям относятся раскаленная топка или раскаленные поверхности материалов, расположенных в топке. Фотодатчики, работающие на ультрафиолетовом спектре, такие как ФДС-03, ФДА-03, ФД-05ГМ, ФДСА-03М не реагируют на раскаленные поверхности, излучающие ИК спектр. Фотодатчики, работающие на инфракрасном спектре, такие как ФДС-01, ФД-02, ФДСА-03М принимают сигнал переменной составляющей факела (мерцание факела) на частоте 10-15Гц. В большинстве случаев это позволяет избежать влияния раскаленных поверхностей.

Устройства контроля пламени серии ФДСА-03М и фотодатчики ФДС-03-С-Ех являются результатом последовательно проводимых работ по совершенствованию приборов данного типа. Чем же они отличаются от своих предшественников?

Устройство ФДСА-03М имеет цифровой индикатор интенсивности пламени, предупредительную и основную сигнализацию о погасании пламени, систему самодиагностики, цифровой и аналоговый выходы, возможность работы в 2-х режимах: с учетом фонового излучения от других горелок и без него. Прибор обеспечивает контроль факела по двум каналам, что позволяет контролировать наличие факела, использующего в качестве топлива газ, уголь, жидкое топливо, а также контролировать одновременно или по отдельности факел на двух видах топлива: газ-мазут, газ-уголь, мазут-уголь. Кроме того, ФДСА-03М обеспечивает селективный контроль факела основной горелки в многогорелочных топках с встречным или плотным расположением горелок, где затруднен индивидуальный контроль факела горелки, а также для контроля факела в топке газомазутных или пылеугольных котлов. Для достижения повышенной селективности прибора введено измерение характеристик фонового факела непосредственно с возмущающей горелки, а также применена фильтрация узкого спектра ультрафиолетового и видимого излучения.

Устройство контроля пламени в исполнении ФДСА-03М-01-IP65 выполнено в моноблочном высокопрочном металлическом корпусе и имеет следующие особенности: подсоединение кабеля с помощью надежной клеммной колодки, температура окружающей среды от минус 60 до плюс 65 0 С, кратковременно до плюс 75 0 С, встроенная сигнализация от перегрева. Электронные компоненты выполнены на самой современной элементной базе, что является залогом для стабильной и безаварийной работы в тяжелых условиях эксплуатации.

Фотодатчик ФДС-03-С-Ех реализован на основе новейшего высокочувствительного фотоприемника последнего поколения, что обеспечивает эксплуатационный ресурс в 7-10 раз выше, чем у ранее применявшихся колбовых, фоторезистивных и фотодиодных приемников. Диапазон допустимых температур окружающей среды от — 50 до + 60 °С. Прочный антивандальный корпус со степенью защиты IP65 позволяют использовать датчик в самых тяжелых и неблагоприятных климатических и эксплуатационных условиях, в том числе на нефтехимических производствах.

По своим техническим и эксплуатационным характеристикам приборы ФДС-03-С-Ех и ФДСА-03М-01-С-IP65 не имеют аналогов не только в России, но и среди производимой зарубежными изготовителями подобной продукции. Внешний вид семейства этих приборов показан на рис.1.

Типы основных датчиков пламени, в т.ч. сигнализирующих, и их основные характеристики:

ИБП для фазозависимых котлов отопления

Как выбрать ИБП для фазозависимых котлов отопления. Принцип работы датчика пламени котла отопления

Необходимость фазировки для работы котла отопления

В современных газовых котлах отопления управление подачей топливной смеси и параметрами составления смеси газа и воздуха управляет электронный контроллер. Информацию о наличии пламени, интенсивности горения и о качестве сжигания газа контроллер получает от датчика пламени. В основе принципа работы датчика пламени лежит процесс образования свободных ионов в воздушной среде между электродами и горелкой под воздействием пламени. Корректная работа такого датчика возможна только при правильном фазном подключении котла отопления к электрической сети. Направление движения свободных электронов определяется наличием фазы на электроде.

Для чего нужен контроль наличия пламени в газовых котлах отопления?

Прежде всего для безопасности эксплуатации отопительного прибора. Для повышения эффективности сжигания топлива в современных котлах и увеличения КПД котлов используется приготовление насыщенной воздушно-газовой смеси. Чем больше воздуха направить в такую смесь, тем более эффективным будет процесс сжигания. Однако при большой мощности воздушного потока в сочетании с сильной тягой может произойти отрыв пламени. Этот процесс очень опасен, если не прекратить подачу топлива, то может произойти объемный взрыв большой мощности.

Второй важной функцией автоматики, работающей на анализе интенсивности образования свободных ионов в пламени, является управление процессом составления горючей смеси. Получая данные от датчика пламени, процессор принимает решение об изменении скорости подачи топлива в горелку и об изменении соотношения долей газа и воздуха в смеси. Добиваясь оптимального уровня горения, удаётся существенно повысить эффективность котла и улучшить экологичность работы прибора.

Принцип работы датчика пламени котла отопления

Чтобы эффективно и быстро контролировать наличие пламени в горелке газового котла отопления используются датчик пламени, построенный на принципе изменения электрической ёмкости воздуха при ионизации его пламенем. Основной принцип функционирования датчиков пламени ионизационного типа состоит в том, что в процессе горения смеси газов образуется большое количество свободных ионов. Эти свободные заряженные частицы устремляются к ионизационному электроду, образуется электрический ток ионизации. Электрический сигнал с ионизационного электрода приходит в электронный модуль управления котла отопления. Если в процессе горения топлива появляется необходимое число свободных ионов, то процессор модуля управления подтверждает подачу топлива в главную горелку котла. Если уровень свободных ионов снижается, то блок управления даёт команду на прекращение подачи топлива в горелку.

В отличие от контроля пламени с помощью теплового клапана, ионный датчик пламени даёт команду на отключение раньше. Котел будет отключен в начале процесса аварии, до того как элементы котла остынут.

Выбор ИБП для фазозависимых котлов отопления

Для работы современных фазозависимых котлов отопления необходимо использовать специализированный источник бесперебойного питания, имеющий явную фазу и нейтраль.

По этой причине нельзя применять обычные компьютерные ИБП, они не имеют выделенной фазировки. По этой же причине нельзя использовать без специального ИБП электрогенераторы, не имеющие выраженной фазировки электрического тока.

Компания БАСТИОН производит линейку специальных источников бесперебойного питания для котлов отопления. ИБП TEPLOCOM и SKAT разработаны специально для питания современных газовых котлов отопления и циркуляционных насосов.

Источники бесперебойного питания БАСТИОН имеют:

  • правильную фазировку выходного сигнала;
  • синусоидальный график напряжения;
  • стабилизированную частоту тока.

ИБП TEPLOCOM и SKAT способны обеспечивать длительный резерв питания в случае отключения сетевого напряжения. Специализированные источники питания для оборудования систем отопления были протестированы специалистами международных электротехнических лабораторий и были рекомендованы для организации питания газового оборудования известных брендов.

Все источники бесперебойного питания TEPLOCOM и SKAT производятся в соответствии с требованиями российских и международных стандартов качества и безопасности продукции. Подробнее об ИБП для котлов отопления БАСТИОН смотрите в разделе «Источники бесперебойного питания».

Физический процесс ионизации воздуха пламенем

В физике хорошо известен эффект влияния пламени на ионизацию воздуха. Простой физический эксперимент доказывает изменение электрических свойств воздушной среды при воздействии на него открытым пламенем. Ниже приводим видеоролик такого физического эксперимента.

Ионизация газа пламени

В природе ионизация воздуха возникает при разрядах молнии. Мощные потоки ионов возникают при термоядерных взрывах на звездах. Процесс появления ионов различных веществ демонстрируется в ходе физических экспериментов. Ниже представлены красивые изображения потоков ионов.

Где купить специализированный ИБП для котла отопления

Купить качественные и проверенные временем российские источники бесперебойного питания компании БАСТИОН для газовых котлов отопления и другого оборудования можно в магазинах фирменной сети СКАТ в городах: Москва, Санкт-Петербург, Ростов-на-Дону, Новосибирск, а также в фирменном интернет-магазине «СКАТ».

Контроль пламени газовой горелки котла

Войти

Авторизуясь в LiveJournal с помощью стороннего сервиса вы принимаете условия Пользовательского соглашения LiveJournal

  • Recent Entries
  • Archive
  • Friends
  • Profile
  • Memories
Читать еще:  Инжекционная газовая горелка для горна своими руками

Как работает датчик газового пламени в современных водогрейных котлах и газовых плитах?

Всем, наверное, интересно узнать, каким образом работает газовая защитная автоматика.
Нет, вернее не так. Кому-то, думаю, интересно узнать, как работает современная газовая защитная автоматика.
Впрочем, даже если это и никому не интересно, то мне понадобилось узнать этот вопрос, что бы отремонтировать систему росжига собственого отопительного газового котла.

Итак, если вы всё ещё тут:
Принцип работы датчика газового пламени основанный на несимметричной проводимости.

Пояснения к вопросу.
В некоторых котлах работающих на газе используется в качестве датчика пламени электрод помещенный в пламя. На этот электрод через конденсатор порядка нанофарад подается фаза. Когда электрод находится в пламени, то участок «корпус горелки-пламя-электрод» обладает несимметричной проводимостью.
Из-за этого на электроде появляется постоянная составляющая которая отфильтровывается и служит сигналом о наличии пламени.

Вопрос.
Почему появляется нессиметричная проводимость?

Вот пример схемы.

Уточню вопрос.
Я понимаю, что плазма проводит ток.
Не понимаю как появляется диодный эффект?
Какие физические законы тут действуют?
Вот если студенту изучающему плазму, нарисовать эту схему и задать вопрос:
«При работе котла на электроде появится «плюс» или «минус» постоянной составляющей?»
Как он получит ответ?

Всё просто. При сгорании углеводородов продукты неполного сгорания — сажа (С) , СО и водород. При ионизации все они дают положительные ионы. Отрицательные ионы — только кислорода, которого у электрода — в зоне неполного сгорания — мало.
Кроме того ионы водорода — протоны намного подвижнее тяжёлых ионов.
Т. е. основными носителями во в целом квазинейтральной плазме оказываются ПОЛОЖИТЕЛЬНЫЕ протоны.
Так что положительная полярность на электроде замыкается на корпус благодаря транспорту протонов, а отрицательная — благодаря гораздо худшему переносу кислорода.
Свободные электроны же как носители в плотной (типа 1 атмосферы) плазме далеко не улетают.

Та что факел действительно действует как диод в прямом направлении.

Соотвественно, если вы хотите сделать имитатор работы датчика пламени без самого пламени, то вам всего-лишь необходимо подключить любой силовой диод между корпусом и сигнальным входом схема датчика газового пламени андом к этому сигнальному входу.

Контроль пламени и управления розжигом

В установках для сжигания газа, жидкого или твердого топлива одним из основных параметров, обеспечивающих безопасную работу всей установки, является контроль наличия и погасания факела. Серийно выпускаемые и новые разработки «Промы» по приборам контроля факела полностью удовлетворяют всем требованиям потребителей различных отраслей промышленности по видам топлива, по спектральным характеристикам, по селективности и самое главное по надежности.

Эти приборы различаются по методу контроля пламени:
а) световое излучение;
б) ионизационный (электрическая проводимость пламени).

Световое излучение — по выделению из светового излучения спектральных характеристик:
а) Инфракрасного спектра излучения;
б) Ультрафиолетового спектра излучения.

Надежность работы установок зависит от правильного выбора приборов контроля факела. Типы приборов и датчиков, а также их области применения приведены в таблицах.

Фотодатчики — это устройство, которое регистрирует и реагирует на изменение интенсивности светового потока. Различаются по длине волны источника излучения.
Фотодатчики состоят из светоприемника или светоприемника с усилителем и преобразователя. Приемник анализирует поступивший световой поток, проверяет, поступил ли он от источника излучения и передает соответствующий сигнал на усилитель и далее на сигнализатор горения.

Сигнализаторы горения — это вторичный прибор обрабатывающий сигнал от фотодатчика и выдающий сигнал в виде контактов реле или аналогового сигнала о наличии или отсутствия пламени на исполнительное устройство.

Сигнализирующие фотодатчики — совмещают в себе функцию фотодатчика и сигнализатора горения, объединенных в одном корпусе.

Таблица совместимости сигнализаторов горения и фотодатчиков
ФД-02
инфракрасный
ФД-05ГМ
ультрафиолетовый и инфракрасный
ФДС-Ч
инфракрасный
ФДА-02
видимый
ФДА-03
ультрафиолетовый
КЭ (ИД)
ионизационный
ЛУЧ-АМ+++
ЛУЧ-КЭ+
Прома-СГ++
БРЗ-04-М1-2К++++++
Ф34.2+++
Фотодатчики сигнализаторы
МодельСпектрВыходной сигналРесурс фотоприемника
ФДС-01-220ИнфракрасныйРеле5-10 тыс.час
ФДС-03-220УльтрафиолетовыйРеле20-30 тыс.час
ФДА-02ВидимыйАналоговый 4-20мА30-50 тыс.час
ФДА-03УльтрафиолетовыйАналоговый 4-20мА50-80 тыс.час
Применяемость
Вид топливаТип прибора
Котлы с 1 или 2 двумя горелками
ДЕ, ДКВР, НР и т.д.
газ/мазут/угольЛУЧ-1АМ + ФД-02
газЛУЧ-КЭ + КЭ
газ/угольФДС-01, ФДС-03
Печи подогрева нефти, газагаз/мазутФДС-01Г
Котлы до 4-х горелок расположенных
на одном ярусе
газ/мазутЛУЧ-1АМ + ФД-05ГМ
газ/угольФДС-03
газПрома-СГ + ФДА-03
Туннельные, и камерные печи обжига
кирпича, керамики
газПрома-СГ + ФДА-03
ФДА-03
Печи нефтехимических производствуголь/жидкое топливоПрома-СГ + ФДА-02
Нагревательные и термические печейФДА-02
Многогорелочные котлы ТЭЦ, ГРЭС
со встречным расположение горелок
уголь/жидкое топливоПрома-СГ + ФДА-02
ФДА-02
газПрома-СГ + ФДА-03
ФДА-03

Предназначен для автоматизации работы (розжига, регулирования и защиты) водогрейных или паровых котлоагрегатов, автоматизации теплогенераторов, асфальтобетонных установок, сушилок, печей, а так же других тепловых установок, работающих на газообразном и/или жидком топливе.
Для замены устаревших систем автоматики типа АЛЬФА, БУК, БУРС и прочих.

Предназначен для автоматизации розжига, регулирования и защиты по 6-10 параметрам котлоагрегатов, теплогенераторов, блочных горелок, работающих по газообразном и жидком топливе. Конструкция автомата горения позволяет значительно расширить функции с применением блока расширения.

Предназначены для розжига и контроля пламени газовых и жидкотопливных горелок, работающих как под наддувом, так и с естественной тягой, а также возможностью регулирования мощности по заданной температуре.

Предназначены для розжига и контроля пламени газовых и жидкотопливных горелок, работающих как под наддувом, так и с естественной тягой.

Предназначен для управления горелочными устройствами, обеспечивает одновременное регулирование и поддержание следующих параметров:

  • разрежения в топке;
  • температуры для водогрейного котла или давление пара для парового котла;
  • соотношение газ/воздух перед горелкой;
  • регулятор также может быть использован для управления горелками тепловентиляторов и технологических установок.

Регулятор работает совместно с аналоговыми датчиками, имеющие стандартные токовые выходы.

Предназначен для работы с водогрейными и паропроизводительными установками всех типов.
Блок осуществляет проверку собственной работоспособности в режиме автотестирования.

Блоки управления котлом БУК-МП: БУК-МП-01, БУК-МП-02, БУК-МП-03, БУК-МП-05, БУК-МП-05м

Предназначены для автоматического управления водогрейными или паровыми котлами, сушильными агрегатами, хлебопекарными, обжиговыми печами, теплогенераторами и т.д.

  • 1
  • 2
  • 3

Газовая горелка для котла: типы, устройство, чистка и помощь с выбором

Газовая горелка для котла реализует процесс сжигания газа, перемешивая его в нужном объеме с кислородом из воздуха, тем самым создавая газовоздушную смесь для полноты сжигания.

В результате топочного процесса агрегат способен вырабатывать тепловую энергию в виде воды или пара. Такое устройство и внутренние поверхности нагрева котла считаются его базовыми узлами.

Собственнику котла подбор горелки выполнять самостоятельно не потребуется, поскольку они поступают в комплекте с котельным оборудованием.

  • 1 Устройство и принцип работы
  • 2 Виды газовых горелок для котлов
    • 2.1 Вентиляторные
    • 2.2 Атмосферные газовые горелки
    • 2.3 Диффузионно кинетические
  • 3 Классификация по способу подачи воздуха
    • 3.1 Низкотемпературная
    • 3.2 Инжекционная горелка для котла
    • 3.3 Дутьевая
  • 4 Как почистить газовую горелку
  • 5 Горелка для газового котла своими руками
  • 6 Советы по выбору

Устройство и принцип работы

Принцип функционирования такого устройства прост — газ с использованием эжектора переходит во внутреннюю полость с высокой скоростью, что позволяет затягивать в свой объем воздух, перемешивая его с газом.

По распределительным трубкам готовая газовоздушная смесь поступает к отверстиям, на выходе из которых поджигается с применением специального запального устройства. В большинстве бытовых нагревательных котлов используется пьезозапальник

  • форсуночное устройство;
  • запальник или пьезорозжиг;
  • первичный датчик, контролирующий наличие пламени.

Виды газовых горелок для котлов

Конструкция котла и горелочные устройства тесно связаны. Производитель котла обычно самостоятельно выпускает ее к котлу или комплектует его строго определенной моделью, которая работает для обеспечения теплового баланса.

Менять или реконструировать такие устройства не допустимо, поскольку это может вызвать создание аварийной взрывоопасной ситуации при работе газового оборудования.

Классификация газогорелочных устройств:

  • атмосферного типа, обычно применяются в агрегатах с открытой топочной камерой небольшой тепловой мощности;
  • вентиляторные или с наддувом для закрытой топки, применяются в мощных котлоагрегатах;
  • с постоянно работающим запальным устройством;
  • с пьезоросжигом.

Кроме того существуют комбинированные мазутные горелки для котла способные работать на двух видах топлива на газе и мазуте, например, горелка газомазутная ГМГ.

Вентиляторные

Такие устройства являются энергозависимыми и функционируют с принудительной подачей кислорода из воздуха. Конструкции таких горелок позволяют более точно выполнять смешивание двух сред, поэтому процесс сжигания протекает наиболее качественно.

Горелки устанавливаются в бытовых агрегатах со значительной тепловой нагрузкой и в промышленных производствах, используемых для центрального теплоснабжения, например в качестве мазутной горелки для котла.

В основном они применяются на котлах ДЕ 16 14, вырабатывающих насыщенный пар Такие устройства среднего давления комплектуются автоматикой, позволяющей управлять работой. Например, горелки ГМГ 4 или 4м и горелка ГМГ 5 оборудованы датчиками контроля пламени. Во время отрыва факела, такой агрегат отключается автоматически.

Газомазутные горелки работающие на двух видах топлива, имеют дополнительный блок, который выполняет предварительную подготовку мазута: очищает его от взвешенных веществ и разогревает примерно до температуры 70 С, тем самым снижая степень его вязкости.

Атмосферные газовые горелки

Этот конструкционный тип горелочного устройства наиболее простой, что значительно облегчает эксплуатацию котла. Функционируют они благодаря естественному подсосу и перемешиванию воздуха.

Удаление продуктов сгорания топливной смеси происходит через дымоходы. Воздух в них поступает непосредственно из помещения, которое должно иметь хорошую приточно-вытяжную вентиляцию, с 3-х кратной циркуляцией воздуха в топочной.

Такие устройства обладают главным своим достоинством — энергонезависимость работы, то есть они могут функционировать без электроснабжения. Они имеют самый низкий КПД из всех доступных моделей, поскольку обладают низкой способностью эффективно смешивать газ и воздух.

Диффузионно кинетические

Диффузионно-кинетические устройства — это промежуточный вариант между атмосферными и вентиляторными. Эксплуатируются они в основном в промышленных газовых котельных.

Комбинированные горелочные устройства применяются для агрегатов использующих два вида топлива — газ и мазут или печное топливо. Они считаются более эффективными, имеют хороший диапазон по регулированию нагрузки агрегата от 15 до 105 % и оборудованы автоматикой безопасности.

Классификация по способу подачи воздуха

Подача, объем и качество смешения воздуха с газом является основой эффективной работы устройства, а от этого будет зависеть, может ли оно выйти на свои нормативные показатели по тепловой мощности и КПД.

По способу подачи воздуха устройства группируются:

  • бездутьевые — воздушные массы поступает к устью горелки за счет разрежения в топочной камере;
  • инжекционные, в них воздушные потоки втягиваются к устью горелки для котлов отопления, струей газа;
  • дутьевые, топочный воздух поступает в топку с использованием центробежного вентилятора.

Низкотемпературная

В котлах с открытыми топками монтируют устройства атмосферного типа. Принцип их функционирования довольно прост. Газ под давлением в магистрали поступает к запальнику через эжекторное устройство, тем самым затягивая воздух из топочной.

Розжиг производится малым объемом низкотемпературного пламени от фитиля запальника. Такой вариант используется для маломощных бытовых отопителей. Они обладают низким стоимостным показателем, простой эксплуатацией и работают с малым уровнем шумности.

Инжекционная горелка для котла

Это конструкции газовых горелок имеют повышенные показатели тепловой мощности. Эффективность их работы связана с тем, что еще до поступления газа в камеру, он обогащается кислородом из воздуха.

Получение рабочей смеси осуществляется в несколько стадий. По данному принципу работает жидкотопливная кровельная горелка.

Конструкция подобного газогорелочного аппарата выполнена из ряда пустотелых каналов — форсунок, по которым поступает с огромным давлением газ, тем самым инжектирует (подсасывает) воздушные массы, имеющиеся в топочной камере.

Сгорает подобная смесь в виде малогабаритных факелов, поэтому они еще именуются микрофакельными. В топке, все время функционирует запальник либо пилотная форсунка. В сравнении с дутьевыми вариантами, такая модель, потребляет газа до 20% больше.

Дутьевая

В закрытых топках воздух подается дутьевыми вентиляторами. Такие горелочные варианты не являются универсальными, а рассчитываются под конкретный котел, например, как газовая горелка ГГС.

Для собственника индивидуального отопления — это огромное преимущество, потому что такое устройство идет с базовой комплектацией котла и его не нужно специально устанавливать и настраивать.

Горелочный блок оборудован такими узлами:

  • фильтр очистки газа;
  • регулятор по давлению газа;
  • регулятор по расходу газа;
  • газовый редуктор;
  • первичные датчики;
  • электрореле для автоматического отключения/включения горелочного устройства по результатам настройки котла;
  • электрореле вентилятора, останавливает подачу газа при отключении двигателя дутьевого устройства.

Как почистить газовую горелку

Форсунка на газовом котле считается одним из основных его узлов. Для того, чтобы технологический процесс протекал без нарушений, нужно поддерживать рабочие элементы горелки для котлов в чистоте, иначе потребуется выполнять серьезный ремонт газовой горелки котла. Эти мероприятия выполняют в профилактических целях, а также когда она не зажигается.

До того, как ее очистить, требуется закрыть подачу газа.

Алгоритм выполнения чистки горелочного устройства от сажи:

  1. Отключают провод кнопки розжига.
  2. Снимают зажимное устройство термопары.
  3. Отмечают маркером уровень входа форсунки в горелочное устройство, чтобы позже установить ее в нужном расположении.
  4. Выкручивают гаечку, обеспечивающую соединение клапана с устройством.
  5. Точно также отключают пьезозапальник.
  6. Извлекают форсунку.
  7. Переходят к процессу очистки ершиком и жесткой щеткой.
  8. Когда нагар будет снят, продувают отверстия пылесосом.
  9. Далее производят установку горелки в котел.

Горелка для газового котла своими руками

Выполнить горелку самостоятельно не сложно, но специалисты это делать не рекомендуют, а особенно для котлов заводского изготовления, в которых расчет газовой горелки для котла выполнен профессионально производителем оборудования.

Иногда, когда у пользователя имеется твердотопливный агрегат, работающий на дровах, и имеется конструктивная возможность, в него устанавливают газовое устройство атмосферного типа.

Для применения данного модуля не нужно кардинальным способом переустраивать агрегат, а используют зольную камеру. Для процессов контроля и регулировки устанавливают автоматику. Горелку лучше подобрать по тепловой мощности, заводского изготовления.

Советы по выбору

Правильный выбор газогорелочного устройства может рассматриваться совместно с правильным выбором котлоагрегата. Все заводские отопители бытового назначения комплектуются такими устройствами, которые в максимальной степени подходят для данной конструкции.

Тем не менее, нужно разбираться в маркировке газовых горелок для котлов, чтобы понимать, какой процесс нагрева она может обеспечить.

К примеру, буква «Г» в маркировке ориентирует пользователя на то, что она специализирована только для работы на газовом топливе, как в видах газовых горелок «Пламя 1», «Данко» «Ферроли» и «Прометей». «ГМ» — сообщает о том, что эта марка специализирована для котлоагрегатов, работающих на газовом и мазутном топливе. Буква «Р» — ротационная модель. Перед тем как подобрать горелку для котла потребуется учитывать конструкцию существующей системы дымовентиляции, чтобы не выполнять позже реконструкцию котла.

Существуют и более сложные модификации, например, горелка для котла КЧМ — оснащается тремя форсунками. Наиболее часто применяется при переходе котлов с твердого на природный/сжиженный газ.

«Купер» — горелочный аппарат комбинированного типа, работающий на разнообразных видах топлива и имеет простой вариант монтажа.

Из всего вышесказанного можно сделать одно очень важное заключение — горелка для газовых котлов считается «сердцем» любого агрегата. Ее не возможно рассматривать отдельно или заменять на другие модификации самостоятельно, поскольку котлы и горелки — одно конструктивное целое.

Использование самодельной горелки в заводских котлах не допускается. Собственнику котла нужно разбираться в принципах работы горелочного устройства, чтобы обеспечить максимальную и продолжительную работоспособность оборудования.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector