0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Ветровая нагрузка на кровлю

Ветровая нагрузка.Нагрузки, действующие на несущую конструкцию скатных крыш

При боковом давлении ветра воздушный поток сталкивается со стеной и крышей здания (рис. 1). У стены дома происходит завихрение потока, часть его уходит вниз к фундаменту, другая по касательной к стене ударяет в карнизный свес крыши. Ветровой поток, атакующий скат крыши, огибает по касательной конек кровли, захватывает спокойные молекулы воздуха с подветренной стороны и устремляется прочь.

Таким образом, на крыше возникают сразу три силы, способные сорвать ее и опрокинуть — две касательные с наветренной стороны и подъемная сила, образующаяся от разности давлений воздуха, с подветренной стороны. Еще одна сила, возникающая от давления ветра, действует перпендикулярно склону (нормаль) и старается вдавить скат крыши внутрь и сломать его.

В зависимости от крутизны скатов нормальные и касательные силы изменяют свое значение. Чем больше угол наклона ската кровли, тем большее значение принимают нормальные силы и меньшее касательные, и наоборот, на пологих крышах большее значения принимают касательные, увеличивая подъемную силу с подветренной и уменьшая нормальную с наветренной стороны.

рис. 1. Ветровые нагрузки, возникающие от давления воздушных масс

Расчетное значение средней составляющей ветровой нагрузки w в зависимости от высоты z над поверхностью земли следует определять по формуле: Wр = W×k(z)×c, где W — расчетное значение ветрового давления, определяется по карте приложения в «Изменениях к СНиП 2.01.07-85» (рис. 2); k — коэффициент, учитывающий изменение ветрового давления для высоты z, определяется по таблице 2; c — аэродинамический коэффициент, учитывающий изменение направления давления нормальных сил в зависимости от того с какой стороны находится скат по отношению к ветру, с подветренной или наветренной стороны (рис 3).

рис. 2. Районирование территории Российской Федерации по расчетному значению давления ветра

Коэффициент k(z) для типов местности (таблица 2)

Высота z, мАБВ
не более 50,750,50,4
101,00,650,4
201,250,850,55
Типы местности:
А – открытые побережья морей, озер и водохранилищ, пустыни, степи, лесостепи, тундра;
Б – городские территории, лесные массивы и другие местности, равномерно покрытые препятствиями высотой более 10 м;
В – городские районы с плотной застройкой зданиями высотой более 25 м

рис. 3. Значения аэродинамических коэффициентов ветровой нагрузки

Знак «плюс» у аэродинамических коэффициентов определяет направление давления ветра на соответствующую поверхность (активное давление), знак «минус» — от поверхности (отсос). Промежуточные значения нагрузок следует находить линейной интерполяцией. При затруднении в использовании таблиц 3 и 4 изображенных на рисунке 10, нужно выбирать наибольшие значения коэффициентов для соответствующих углов наклона скатов крыш.

Крутые крыши ветер старается опрокинуть, а пологие — сорвать и унести. Для того чтобы этого не произошло нижний конец стропильных ног крепят проволочной скруткой к ершу, забитому в стену (рис. 4). Ерш — это металлический штырь с насечкой против выдергивания, который изготавливают кузнечным способом. Поскольку достоверно неизвестно с какой стороны будет дуть сильный ветер, стропила прикручивают по всему периметру здания через одно, начиная с крайних, — в районах с умеренными ветрами и каждое — в районах с сильными ветрами. В некоторых случаях этот узел может быть упрощен: ерш не устанавливается, а проволока с выпущенными концами закладывается в кладку стен в период их возведения. Такое решение допустимо, если оба конца проволоки выпускается внутрь чердака и не портят внешний вид фасада здания. Обычно для крепления стропил используется стальная предварительно отожженная (мягкая) проволока диаметром от 4 до 8 мм.

рис. 4. Пример решения карнизного узла наслонных стропил скатной крыши/

Общая устойчивость стропильной системы обеспечивается раскосами, подкосами и диагональными связями (рис. 5). Устройство обрешетки также способствует общей устойчивости стропильной системы.

рис. 5. Пример обеспечения пространственной жесткости стропильной системы

Источник: «Конструкции крыш. Стропильные системы» Савельев А.А.

Оставляя комментарий Вы соглашаетесь с Политикой конфиденциальности

Как правильно рассчитать ветровую нагрузку и закрепить кровлю, чтобы ее точно не сорвало

Из-за ошибок, допущенных при строительстве, у домов нередко срывает кровли во время непогоды. Кажется, что не так часто случаются сильные ураганы и смерчи, но даже один катаклизм в год может полностью разрушить крышу.

Это происходит потому, что исполнители работ не рассчитывают количество крепежа для мембраны по необходимым формулам и обычно делают все по принципу «на глазок». В итоге плохо закрепленная кровля может попросту оторваться и ее надо будет заново монтировать. Также от точного расчета зависит расход материалов, которые при неправильных подсчетах приходится докупать, либо иногда остается лишнее.

Рассказываем, как сделать правильный расчет ветровой нагрузки для крепления кровли и определить количество крепежа, чтобы конструкция устояла перед стихийным бедствием и долго служила.

Как ветровая нагрузка действует на кровлю

Представьте себе, что на постройку непрерывно с разной скоростью и силой дует ветер. Потоки воздуха создают давление, которое способно навредить покрытию кровли. При этом совершенно необязательно, чтобы ветер дул перпендикулярно или по касательной к поверхности крыши – даже если он направлен вдоль плоской кровли, он создает значительную отрывающую нагрузку.

Суммируя все ветреные дни и добавив катаклизмы, которые хоть и редко, но случаются, мы получаем постепенное непрерывное разрушение материала. Именно поэтому возникает необходимость рассчитывать ветровую нагрузку и количество креплений кровельного материала.

Как рассчитывают ветровую нагрузку для крепления кровли

От ветровой нагрузки зависит, сколько нужно использовать крепежных элементов и какую выбрать ширину рулона мембраны. Чем выше нагрузка, тем больше нужно крепежа на квадратный метр. Ширину мембраны также приходится уменьшать, чтобы крепеж уместился в шов.

Чтобы самостоятельно рассчитать ветровое воздействие на кровлю, можно воспользоваться методикой в 7 пункте документа, разработанного специалистами ТЕХНОНИКОЛЬ вместе с ЦНИИПромзданий.

Существует и более простой способ расчета ветровой нагрузки

Если вы хотите быстро получить точный результат и не связываться со сложными формулами, таблицами и картами, воспользуйтесь нашим онлайн-калькулятором для кровли из материалов ТЕХНОНИКОЛЬ.

Калькулятор помогает рассчитать не только ветровую нагрузку для плоских крыш, но и количество необходимого крепежа на каждом участке, а также требуемую ширину рулонов гидроизоляции.

Расчеты основаны на действующих российских нормах СП 20.13330.2016 и СП 17.13330.2017.

В калькулятор встроена карта России с районированием по давлению ветра, так что вам не нужно самостоятельно искать на картах и в таблицах нужные значения. Достаточно выбрать место и кликнуть или указать точное название населенного пункта.

Вы выбираете тип местности – открытую, равномерно покрытую препятствиями или высотную городскую застройку. По этим двум параметрам калькулятор выдает первое значение – пиковую ветровую нагрузку согласно СП 20.133330.2016 п.11.

Далее переходим к основанию кровли и выбираем – тяжелый бетон, ОСП и металлическое основание профлист (0,7 мм или 0,75–2,5 мм). При выборе профлиста калькулятор предложит еще пять вариантов в зависимости от шага между гофрами. Вы также можете указать свой вариант.

На третьем этапе нужно указать толщину утеплителя, который вы будете использовать, и способ его укрепления. Также возможен вариант без утеплителя.

На этапе гидроизоляции нужно указать способ ее фиксации. В калькуляторе предусмотрено два варианта крепления: механический и балластный. Если у вас балластный, также нужно указать его тип – армированная стяжка или гранитный щебень. Далее выбирайте тип мембраны: битумная или полимерная. Кстати, у каждого материала можно посмотреть характеристики и всю необходимую информацию, нажав на кнопку с вопросом.

Пятый этап включает работу с геометрией объекта, где нужно вводить параметры участка кровли. Калькулятор рассчитывает значение только для плоских крыш прямоугольной формы, поскольку методика расчета использует пиковые значения аэродинамических коэффициентов ветровой нагрузки. Вам нужно указать высоту здания и его габариты. Высоту принимаем по самой высокой точке здания – парапетной зоне.

После вы получаете промежуточный расчет, где видите основные результаты, например, ширину рулона и шаг крепежа, и проверяете введенные значения, которые можно подкорректировать, если ошиблись.

После этого получаете готовый отчет, где рассчитано:

  • деление кровли на участки (центральная, парапетная, угловая) и ветровое давление на каждый из них;
  • какую ширину рулонов гидро- и теплоизоляции использовать;
  • сколько потребуется крепежа на один квадратный метр и его шаг.

На любой стадии расчета можно «откатить» назад на любой этап и изменить исходные данные. А также сохранить и отправить себе на почту в виде ссылки, чтобы потом вернуться к нему, если вы что-то не доделали. Благодаря формату PDF расчет можно вносить в проект или просто удобно хранить и использовать эти данные.

Нагрузка на крышу дома от ветра и снега

Крыша представляет собой верхнюю конструкцию дома, обеспечивающая его защиту от различных воздействий окружающей среды. Крыша возлагает на себя огромное количество нагрузок по снеговому покрову, ветровой нагрузке, таких явлений природы как дождь, перепады температуры и иные физико-механические факторы. Рассмотрим два основополагающих фактора, воздействующие на долговечность и прочность крыш:

Снеговая нагрузка

Строительными нормами при проектировании и постройке крыш, обязательно учитывается расчет снеговой нагрузки на крышу. Расчет воздействия веса снегового покрова производится с учетом особенностей региона места строительства.

Эта информация предоставляется районными строительными организациями или устанавливается по СНиП 2.01.07-85c с заголовком «Нагрузки и воздействия», а точнее по картам с изменениями «Изменения к СНиП 2.01.07-85». В данных изменениях переизданы ряд карт, в их числе и карты районирования снегового покрова.

Использованные иллюстрации карт Украины в статье приведены c нагрузками снегового покрова, а далее и ветровой нагрузки, в единицах измерения давления Па. Чтобы выявить практическое значение измерения, математическое значение Па умножается на коэффициент 0,102 килограмм силы на метр квадратный, получаем искомое значение. Например, 400 Па*0,102=40,8 кг/кв. м, получаем вес нагрузки снегового покрова в килограммах на метр квадратный покрытия конструкции.

Проектные расчеты несущих конструкций строений производятся методом расчета по предельным состояниям. Это метод расчета по разрушающим усилиям, при которых конструкция теряет способность сопротивляться воздействиям внешних факторов.

Существуют расчеты предельных состояний двух групп: первая – характеризует собой несущую способность; вторая – пригодность к общей эксплуатации.

В первой группе расчеты по предельным состояниям выполняются для предотвращения потери устойчивости формы (расчет устойчивости тонкостенных сооружений и т.п.), положения (расчет на скольжение и опрокидывание и т.п.) и разрушения от неблагоприятного воздействия внешней среды. Эти условия записываются формулами такого вида: ? ? R или ? ? R, которые обозначают, что напряжения при приложенной нагрузке не положено превышать предельно допустимых.

Вторая группа расчетов предотвращает чрезмерные деформации от нагрузок. Допустимы раскрывающиеся узлы сочленений, прогибы, однако, в целом не происходит разрушений, эксплуатация в дальнейшем возможна, но после ремонта. Формула этого условия: f ? fнор, означающая предельность допустимого прогиба при появляющейся нагрузке в конструкции. Прогиб балки L/200 см.

Оба предельные состояния участвуют в расчетах стропильных систем скатных крыш. Целью расчетов является недопустимость разрушения конструкции или прогиба, что выше допустимых пределов.

Для снеговой нагрузки, действующей на несущую конструкцию крыши, каркас рассчитывают согласно 1-й группе состояний – на полный снеговой вес сплошного покрова Q. Данный случай говорит только о весе покрова, обозначим эту нагрузку Qр.сн.. Вторая группа состояний ведет расчет на снеговую нагрузку с коэффициентом 0,7Q, нормативную нагрузку веса снега обозначим Qн.сн..

Преобладающее направление ветров и уклон крыши дает разный снеговой покров, иногда больший, чем на плоской крыше. При возникновении снежного бурана или небольшой метели, подхваченные снежинки ветром, перемещаются на подветренную сторону. Проходя конек, как препятствие крыши, снижается скорость движения снежинок в нижних потоках воздуха, и они оседают на покрытие. Результат этого явления — снега меньше с одной стороны крыши, а больше лежит с другой.

Увеличение и снижение снеговых нагрузок на крышу, которые зависят от угла наклона и направления ветра, обозначаются коэффициентом µ. Приведем пример двухскатной крыши с углами скатов между 20° и 30°. В этом случае со стороны наветренной лежит 75% снега, который мог бы лежать на плоской крыше, а с подветренной стороны обнаружится 125% снега.

Другие значения коэффициентов µ приведено на рис. и в СНиП 2.01.07-85.

Снеговым «мешком» назван скапливающийся слой снега, превышающий толщину среднего нормативного показателя. Места высокой вероятности возникновения снегового «мешка», укрепляют спаренными стропильными ногами и сплошной обрешеткой. Также, вне зависимости основного покровного материала, делают подкровельную подложку, чаще из оцинкованной стали.

Снеговой «мешок» имеет свойство сползать на свес кровли, что может обломить его, поэтому при расчете конструкции размеры свеса соблюдают согласно рекомендациям изготовителя кровельного материала. Как пример шиферной кровли – свес относят к равным 10 см.

Направление ветра, что преобладает в данном регионе, определяют по розе ветров. Согласно проведенным расчетам с подветренной стороны устанавливаются спаренные стропила, с наветренной – одиночные. Если же данные не установлены, в расчетах следует учитывать максимальную нагрузку, так если бы все скаты подвержены большим давлениям покрова с подветренной стороны.

При увеличении угла наклона скатов снеговой покров уходит вниз с крыши под своим давлением. Углы ската превышающие 60° совсем не оставляют на крыше снега. В этом случае коэффициент µ равняется нулю. Промежуточное значение углов ската µ находится методом усреднения. Как пример, для скатов с 50° углом наклона коэффициент µ равен 0,33, для 40° — 0,66.

Таким образом видим, что для выбора сечения стропил, шага установки их, расчетная нагрузка, также нормативная расчетная нагрузка от веса учитывающая углы наклонов скатов (Qн.сн и Qр.сн), рассчитывают так — полную нагрузку от веса (Q) умножают на коэффициента µ:

Qр.сн = Q?µ — для первой группы предельного состояния (прочность);
Qн.сн = 0,7Q?µ — для второй группы предельного состояния (прогиб).

В регионах застройки, где средняя скорость ветра зимних всех трех месяцев более 4 м/с, на крышах с уклоном 12 — 20% (примерно 7 — 12°), случается частично снос покрова с крыши. В данном случае величина расчетной нагрузки от веса должна быть приуменьшена при применении коэффициента c = 0,85. В других случаях расчетов для скатных крыш применяют коэффициент c = 1. Конечные формулы выявления расчетной нагрузки, также и расчетной нормативной нагрузки от веса покрова, которые учитывают ветровой снос снега и наклон скатов, выглядят так:

Qр.сн = Q?µ?c — формула под первое предельное состояние (прочность);
Qн.сн = 0,7Q?µ?c — под второе предельное состояние (прогиб)

Уменьшение снеговой расчетной нагрузки c=0,85 не находит распространения: на крыши конструкций в районах со средней температурой воздуха в зимнем месяце январь более -5°С, так как образующаяся периодами наледь дает препятствия сносу покрова снега ветром; на крыши сооружений, которые защищены от прямого действия ветра соседствующими более высокими конструкциями или лесополосой, удаленной меньше чем на 10h, где h — подразумевается различность высот соседствующего и проектируемого зданий. Среднесуточную температуру января и скорость ветра можно определить по картам с изменениями «Изменения к СНиП 2.01.07-85» либо узнать лично в том районе в котором вы реши строить деревянный дом.

Ветровая нагрузка

Ветровая нагрузка на крышу при боковом давлении воздушного потока несет столкновение с крышей и со стеной здания. Завихрение потока, происходящее у стены, частично уходит к фундаменту, другая часть потока по касательной стены производит удар о свес крыши. Атака ветрового потока огибает касательно конек крыши с захватом спокойных молекул воздуха со стороны подветренной и уходит прочь. Исходя из этого, сил способных сорвать кровлю или опрокинуть ее, возникает сразу три. Одна – сила подъема, которая образуется при разности давления воздуха со стороны подветренной, и две другие силы – касательные со стороны наветренной.

Возникает еще одна сила, способная вдавить склон крыши, действующая перпендикулярно скату. Касательные и нормальные силы могут изменять свое значение в зависимости от угла наклона ската. Понятно, что чем больше величина угла наклона кровли, тем большее влияние принимают силы нормальные и меньше касательные. На крышах пологих принимают большое значение касательные силы, увеличиваясь в своей подъемной силе со стороны подветренной, таким образом, уменьшается нормальная сила со стороны наветренной.

А теперь давайте посмотрим, как происходит расчет нагрузки. Кстати, на карте Украины вам вновь придется переводит Паскали в килограммы, как мы это делали при расчете снеговой нагрузки.

Расчет ветровой нагрузки w, зависящей от высоты z над землей, определяется по такой формуле: Wр = W?k(z)?c, в которой W – расчетное значение давления ветра, определяемое по карте «Изменениях к СНиП 2.01.07-85»; а коэффициент k учитывает изменения ветрового давления для z, определим по таблице; коэффициент c – учитывает изменения всех направлений давления нормальных сил, в зависимости от расположения ската к наветренной или подветренной сторон.

Аэродинамические коэффициенты со знаком «плюс» определяют направление создаваемого давления ветра на поверхность (давление активное), «минус» — от соответствующей поверхности (отсос). Линейной интерполяцией находятся промежуточные значения нагрузок. При затрудненном использовании таблиц 3, 4 на рисунке про аэродинамические коэффициенты ветровой нагрузки, практикуют выбор наибольшего значения коэффициентов для определенных углов наклона крыш.

Крыши с крутым углом наклона, ветер разрушает опрокидыванием, пологие крыши – срываются. Для избегания разрушения, строители нижние концы стропильных ног прикрепляют скруткой из проволоки к ершу, который вбит в стену. Ерш представляет собой штырь из металла с насечками предотвращающие выдергивание, изготавливают способом ковки. Если неизвестен факт стороны, с которой ожидается сильный ветер, то лучше стропильные ноги прикрутить через одну по периметру всего здания – стороны с умеренным ветром, и каждую ногу – в районе с сильным воздушным давлением. Укрепление стропил можно произвести другим образом – концы проволоки заложить в укладку стен во время строительства. Чтобы не испортить внешний фасад, концы проволоки выпустить внутрь чердачного помещения. Удобна в таком использовании отожженная стальная проволока, с диаметрами начиная от 4 мм и до 8 мм.

Общую устойчивость каркаса крыши обеспечивают подкосами, раскосами и связками по диагонали. Способствует стропильной системе использование устройства обрешетки.

Вот таким образом и происходит расчет ветровой нагрузки на крышу.

Если вы внимательно читали, то должны были понять, что вообще их себя представляют ветровая и снеговая нагрузка для вашего будущего дома. Если отнесетесь не серьезно к этому делу, то может произойти беда. Это еще не все виды нагрузок. Оставшиеся виды описываются в другой статье.

Строительные калькуляторы — ProstoBuild.ru

  • Просмотров: 0
  • Автор: PavlovAlexey
  • Дата: 16-06-2018, 17:14

Расчет ветровой нагрузки

При расчете ветровой нагрузки необходимо учитывать многие ее составляющие, но для упрощения всего расчета будем считать ее основную составляющую – среднюю составляющую основной ветровой нагрузки Wm. Для наглядности в таблицу ниже сведены все составляющие ветровой нагрузки согласно СП 20.13330.2016:

Читать еще:  Выбираем профлист для кровли: полный гайд по подбору; правильных; стройматериалов

Формула расчета основной средней ветровой нагрузки следующая:

Где Wm – нормативное значение основной средней ветровой нагрузки, кг/м2
Wo – нормативное значение ветрового давления, кг/м2
k – коэффициент, который учитывает влияние высоты на давление ветра
с – аэродинамический коэффициент

1. Его можно найти у нас в калькуляторе снеговой/ветровой нагрузок, выбрав необходимый город
2. В таблице ниже, зная свой ветровой район:

Теперь давайте разберемся с коэффициентом k.

Данный коэффициент зависит от эквивалентной высоты Ze. Обратите внимание, что это не просто высота до расчетной отметки, и искать ее необходимо следующими вариантами.

Для разных участков по высоте бывают разные эквивалентные высоты

После того, как вы нашли эквивалентную высоту Ze, зная тип вашей местности, находим коэффициент k:

Типы местности:
А – открытые местности (степи, лесостепи, побережье морей, озер, пустыни, тундра, сельские местности с высотой построек до 10 м)
В – городские территории, лесные массивы и другие территории с высотой построек более 10м
С – городские районы с плотной застройкой зданиями высотой более 25м

Завершающим этапом определения средней составляющей ветровой нагрузки является нахождение аэродинамического коэффициента c.

Данный коэффициент может быть как положительным, так и отрицательным, и зависит от формы здания или сооружения и направления ветра. Давайте рассмотрим основные формы зданий и сооружений, с которыми приходится работать.

1. Прямоугольные здания с двускатными покрытиями
a. Ветер направлен сбоку

Если на участке стоит буква вместо цифры, то значение коэффициента необходимо определять интерполяцией в зависимости от уклона крыши.

2. Отдельно стоящие плоские сплошные конструкции (стены, заборы, рекламные щиты)

На рисунках показаны разные участки здания и сооружения и соответствующие аэродинамические коэффициенты с для них.

После того, как все три неизвестные найдены – легко найти нормативное значение основной средней ветровой нагрузки.

Напоминаем формулу Wm = Wo·k·c

При нахождении коэффициента k имеем следующее: d=12 м, h=7 м. При h≤d —> Ze=h=7 м.

Найдем коэффициент k методом интерполяции между 0,5 и 0,65. Получаем k = 0,56.

Далее находим аэродинамический коэффициент с. Здесь b=12м, d=6м, h1=4м, h=7м
е1 – это наименьшее из b или 2·h1. е1=2·4=8м (меньше чем b=12м)
e – это наименьшее из b или 2·h. е=12м (меньше чем 2·h =2·8=16 м)

Зная все размеры, получаем следующее распределение коэффициентов c:

И путем умножения Wo на k и на с мы получаем окончательное распределение ветровой нагрузки:

Для нахождения расчетной ветровой нагрузки необходимо каждое значение еще умножить на коэффициент надежности по ветровой нагрузке равный 1,4.

От автора:
Если данная статья была Вам полезна, то буду очень благодарен, если Вы поделитесь ей с друзьями и коллегами, и сохраните себе в закладки.
Также в ближайшее время будет реализован калькулятор по определению ветровой нагрузки.

Как произвести расчет ветровой и снеговой нагрузки на кровлю в зависимости от региона проживания

18.02.2017 20,113 Просмотров

Кровля осуществляет постоянную защиту здания от всех погодных и климатических проявлений, исключая контакт всех материалов с атмосферной или дождевой водой и являясь граничным слоем, отсекающим воздействие морозного воздуха на чердачное помещение.

Таковы основные и наиболее важные функции кровли в представлении неподготовленного человека, они вполне верны, но не отражают полный список функциональных нагрузок и испытываемых напряжений.

При этом, реальность гораздо суровее, чем это выглядит на первый взгляд, и воздействие на кровлю не ограничивается определенным износом материала.

Оно передается практически всем несущим элементам постройки — в первую очередь, стенам здания, на которые непосредственно опирается вся крыша, а в конечном счете — фундаменту.

Пренебрегать всеми создающимися нагрузками нельзя, это приведет к скорому (иногда — внезапному) разрушению постройки.

Типы нагрузок на кровлю

Основными и наиболее опасными воздействиями на кровлю и на всю конструкцию в целом являются:

  • Снеговые нагрузки.
  • Ветровые нагрузки.

При этом, снеговые действуют в течение определенных зимних месяцев, отсутствуя в теплое время, тогда как ветер создает воздействие круглый год. Ветровые нагрузки, имея сезонные колебания силы и направления, в той или иной степени присутствуют постоянно и опасны периодически случающимися шквальными усилениями.

Кроме того, интенсивность этих нагрузок имеет разный характер:

  • Снег создает постоянное статическое давление, которое можно регулировать путем очистки крыши и удаления скоплений. Направление действующих усилий постоянно и никогда не меняется.
  • Ветер действует непостоянно, рывками, внезапно усиливаясь или утихая. Направление может изменяться, что заставляет все конструкции крыши иметь солидный запас прочности.

Внезапный сход с крыши больших масс снега может причинить ущерб имуществу или людям, оказавшимся в местах падения. Кроме того, периодически случаются кратковременные, но чрезвычайно разрушительные атмосферные явления — ураганные ветра, сильные снегопады, особенно опасные при наличии мокрого снега, который на порядок тяжелее обычного. Предсказать дату таких событий практически невозможно и в качестве защитных мер можно лишь увеличивать прочность и надежность кровли и стропильной системы.

Сбор нагрузок на кровлю

Зависимость нагрузок от угла наклона крыши

Угол наклона крыши определяет площадь и мощность контакта кровли с ветром и снегом. При этом, снеговая масса имеет вертикально направленный вектор силы, а ветровое давление, вне зависимости от направления — горизонтальный.

Поэтому, принимая угол наклона более крутым, можно снизить давление снежных масс, а иногда и полностью исключить возникновение скоплений снега, но, при этом, увеличивается «парусность» крыши, ветровые напряжения возрастают.

Очевидно, что для снижения ветровых нагрузок идеальной была бы плоская кровля, тогда как именно она не позволит скатываться массам снега и поспособствует образованию больших сугробов, при таянии способных промочить всю постройку. Выходом из ситуации является выбор такого угла наклона, при котором максимально удовлетворяются требования как по снеговой, так и по ветровой нагрузкам, а они в разных регионах имеют индивидуальные значения.

Зависимость нагрузки от угла крыши

Вес снега на квадратный метр крыши в зависимости от региона

Количество осадков — показатель, напрямую зависящий от географии региона. Более южные районы снега почти не видят, более северные имеют постоянное сезонное количество снеговых масс.

При этом, высокогорные районы, вне зависимости от географической широты, имеют высокие показатели по количеству выпадающего снега, что, в сочетании с частыми и сильными ветрами, создает массу проблем.

Строительные Нормы и Правила (СНиП), соблюдение положений которых является обязательным к выполнению, содержат специальные таблицы, отображающие нормативные показатели количества снега на единицу поверхности в разных регионах.

Эти данные являются основой расчетов снеговых нагрузок, поскольку они вполне достоверны, а также приводятся не в средних, а в предельных значениях, обеспечивающих должный запас прочности при строительстве крыши.

Тем не менее, следует учитывать устройство кровли, ее материал, а также — наличие дополнительных элементов, вызывающих скопления снега, поскольку они могут существенно превышать нормативные показатели.

Вес снега на квадратный метр крыши в зависимости от региона на схеме ниже.

Регион снеговой нагрузки

Расчет снеговой нагрузки на плоскую крышу

Расчет несущих конструкций выполняется по методу предельных состояний, то есть таких, когда испытываемые усилия вызывают необратимые деформации или разрушения. Поэтому прочность плоской кровли должна превышать величину снеговой нагрузки для данного региона.

Для элементов крыши существует два типа предельных состояний:

  • Конструкция разрушается.
  • Конструкция деформируется, выходит из строя без полного разрушения.

Расчеты ведутся по обоим состояниям, имея целью получить надежную конструкцию, гарантированно выдерживающую нагрузку без последствий, но и без излишних затрат строительных материалов и труда. Для плоских крыш значения снеговых нагрузок будут максимальными, т.е. поправочный коэффициент уклона равен 1.

Таким образом, согласно таблицам СНиП, общий вес снега на плоской кровле составит величину норматива, умноженную на площадь кровли. Значения могут достигать десятки тонн, поэтому зданий с плоскими крышами в нашей стране практически не строят, особенно в регионах с высокими нормами осадков в зимнее время.

Нагрузка на плоскую крышу

Расчет снеговой нагрузки на кровлю онлайн

Пример расчета снеговой нагрузки поможет наглядно продемонстрировать порядок действий, а также покажет возможную величину давления снега на конструкции дома.

Снеговая нагрузка на кровлю рассчитывается с помощью следующей формулы:

где S — давление снега на квадратный метр кровли.

Sg — нормативная величина снеговой нагрузки для данного региона.

µ — поправочный коэффициент, учитывающий изменение нагрузки на разных углах наклона кровли. От 0° до 25° значение µ принимается равным 1, от 25° до 60° — 0,7. При углах наклона кровли свыше 60° снеговая нагрузка не учитывается, хотя в реальности бывают скопления мокрого снега и на более крутых поверхностях.

Произведем подсчет нагрузки на кровлю площадью 50 кв.м, угол наклона — 28° (µ=0,7), регион — Московская область.

Тогда нормативная нагрузка составляет (по данным СНиП) 180 кг/кв.м.

Умножаем 180 на 0,7 — получаем реальную нагрузку 126 кг/кв.м.

Полное давление снега на кровлю составит: 126 умножаем на площадь кровли — 50 кв.м. Результат — 6300 кг. Таков расчетный вес снега на крыше.

Снеговое воздействие на кровлю

Ветровая нагрузка на кровлю

Расчет ветровой нагрузки производится подобным образом. За основу берется нормативное значение ветровой нагрузки, действующее в данном регионе, которое умножается на поправочный коэффициент высоты здания:

W — ветровая нагрузка на квадратный метр площади.

Wo — нормативная величина по региону.

k — поправочный коэффициент, учитывающий высоту над поверхностью земли.

Имеются три группы значений :

  • Для открытых участков земной поверхности.
  • Для лесных массивов или городской застройки с высотой препятствий от 10 м.
  • Для городских поселений или местностей со сложным рельефом с высотой препятствий от 25 м.

Все нормативные значения, как и поправочные коэффициенты содержатся в таблицах СНиП и должны учитываться при расчетах нагрузок.

В заключение необходимо подчеркнуть большую величину и неравномерность нагрузок, создаваемых снегом и ветрами. Значения, сопоставимые с собственным весом крыши, нельзя игнорировать, такие величины слишком серьезны. Невозможность регулировать или исключать их присутствие заставляет реагировать путем увеличения прочности и правильного выбора угла наклона.

Все расчеты должны опираться на СНиП, для уточнения или проверки результатов рекомендуется использовать онлайн-калькуляторы, которых много в сети. Лучшим способом станет применение нескольких калькуляторов с последующим сравнением полученных величин. Правильный расчет — основа долговременной и надежной службы кровли и всей постройки.

Полезное видео

Более подробно о кровельных нагрузках вы можете узнать из этого видео:

Каким должен быть наклон крыши частного дома

Уклон скатов нельзя просто сделать таким, каким хочется. Это важнейший параметр кровли, от которого зависит не только эстетика дома, но и требования к его конструкциям, вплоть до фундамента. Поэтому, чтобы правильно выбрать наклон крыши, нужно учесть сразу несколько факторов. Каких? Расскажем в статье.

Что влияет на угол наклона крыши

Уклон скатной кровли, в основном, зависит от четырех факторов:

  • снеговой нагрузки;
  • угрозы срыва ветром;
  • выбранного кровельного покрытия;
  • наличия жилого мансардного этажа в планах.

Есть еще и второстепенные параметры. Например, оптимальные углы наклона крыши зависят от того, как часто будут обслуживать кровлю, планируется ли ставить на ней оборудование или делать озеленение. Но они обычно не имеют решающего значения.

Когда снега — много

Каждая кровля может выдержать только строго определенную максимальную нагрузку. Эта нагрузка прямо зависит от параметров стропильной системы, опосредованно — от несущей способности стен и фундамента. Превышение максимальной нагрузки приведет к обрушению крыши со всеми вытекающими из этого последствиями. Как это связано с тем, какой уклон должен быть у крыши? Все просто: с его помощью можно влиять на нагрузку.

При небольшом уклоне на крыше может нарасти большая снеговая шапка

Дело в том, что общая нагрузка на кровлю — это сумма двух составляющих в пересчете на 1 м 2 :

  1. Постоянные нагрузки. Это суммарный вес кровельного пирога и всех элементов крыши, включая, например, вес стропильной системы, внутренней отделки, обрешетки.
  2. Переменные нагрузки. Сюда входит вес человека, который будет перемещаться по кровле при обслуживании, а также давление ветра и масса выпавшего снега.

Именно снеговая нагрузка и, в меньшей степени, ветровая интересуют нас, когда мы определяем, какой уклон крыши нужно сделать.

Снеговая нагрузка, согласно СП 20.13330.2016 «Нагрузки и воздействия», вычисляется по формуле S =Sg·μ. Значение Sg — это нормативный вес снегового покрова в районе строительства и его изменить нельзя. А вот μ — поправочный коэффициент, на который прямо влияет угол наклона кровли. Рассчитывается он по-разному для разных видов крыш, но общий принцип прост: чем больше наклон кровли, тем меньше снеговая нагрузка.

Например, для односкатных и двускатных кровель μ=1, если угол ската крыши меньше 30°, и μ=0, если наклон больше 60°. Для промежуточных значений углов поправочный коэффициент вычисляют по формуле: μ = (60°−α)/(60°−30°), где α — это как раз угол наклона кровли.

Это означает, что пологая крыша с уклоном 20 градусов будет держать на себе полный вес снежного покрова, в то время как для крутой кровли, наклоненной под 65°, снеговую нагрузку можно вообще не учитывать. Все, что между крайними вариантами — наше пространство для маневра.

То есть, меняя угол ската кровли в диапазоне от 30° до 60°, мы уменьшаем или увеличиваем снеговую нагрузку. Угол, при котором сумма снеговой и постоянной нагрузки равна несущей способности стропильной системы, и есть минимально допустимый уклон кровли.

Ветер, ветер, ты могуч…

Нормативное ветровое давление, которое рассчитывают по тому же своду правил, что и снеговую нагрузку, от наклона ската крыши не зависит. От ее вида, формы, высоты и других параметров — да. Но не от уклона. Поэтому здесь — не об этом расчетном значении, а о том, как давление ветра в принципе влияет на кровлю.

Если упростить, то чем больше площадь ската и чем ближе к вертикальному его положение, тем больше парусность. То есть на рекламные щиты ветер «давит» с максимально возможной силой, на крыши с крутыми скатами — слабее, но все равно очень существенно. Поэтому в местах с высокой ветровой нагрузкой рекомендуют делать пологие кровли. Так, если уклон крыши 10 градусов, она защищена от «опрокидывания» даже очень сильным ветром. Но, к сожалению, не от срыва.

Если на кровлю с крутыми скатами ветер давит, стремясь опрокинуть ее, то пологую пытается поднять. А когда угол склона крыши небольшой, воздушные массы, обтекающие скаты, создают подъемную силу. И если эта сила станет слишком большой, крышу унесет.

Частично компенсировать этот эффект помогают слуховые окна. Только не люкарны или «кукушки», а небольшие вентиляционные окошки в верхней части фронтона или ската, закрытые решетками-жалюзи. В отличие от обычных окон, слуховые всегда открыты и выравнивают давление снаружи и внутри кровли.

Чтобы избежать избыточного ветрового давления и подъемной силы, в регионах с нормальной ветровой нагрузкой оптимален средний наклон крыши — 30-45°.

Чем кровлю крыть будем?

У всех кровельных материалов, за исключением тех, которые предназначены для укладки на плоскую крышу, есть требования к минимальному углу наклона кровли. А у некоторых ограничен и максимальный уклон ската. Вот, какой уклон крыши должен быть, в зависимости от вида кровельного покрытия:

Кровельное покрытиеМинимальный наклонМаксимальный наклон
Керамическая черепицаклассическая — 22°; бобровый хвост — 30°.60°
Цементно-песчаная черепица22-30°60°
Металлочерепицанет
Профнастил8-10°нет
Фальцевая кровлянет
Шифер25°45°
Ондулиннет
Битумная черепицанет

Но не стоит воспринимать числа из этой таблицы, как запрет использовать кровельное покрытие, если угол наклона крыши меньше минимального. Просто, если вы не впишитесь в эти нормы, кровля может потечь. А если скат наклонен под намного меньшим углом, чем допустимо, вероятность протечки близка к 100%.

Впрочем, этого можно избежать. Нужно принять дополнительные меры по герметизации кровли, которые сделают ее практически водонепроницаемой:

  • нахлесты между листовыми материалами увеличивают в два раза;
  • все стыки уплотняют специальной герметизирующей лентой и тщательно промазывают герметиком;
  • под кровельным материалом укладывают рулонную битумно-полимерную гидроизоляцию по сплошной обрешетке или монтируют качественную гидроизоляционную мембрану, стыки которой тщательно проклеивают.

Это все сильно увеличивает цену устройства крыши здания — у дома фактически будет два кровельных покрытия. Нижнее — рабочее, которое и защищает кровлю от протекания. А верхнее покрытие будет закрывать нижний гидроизоляционный слой от ультрафиолета и выполнять декоративную функцию.

Поэтому при расчете, сколько должен быть уклон крыши, минимальные углы монтажа кровельного покрытия нужно учитывать, в первую очередь, ради экономии на устройстве кровли. Кроме того, укладка кровельного материала на скат, уклон которого меньше минимального, часто лишает гарантии производителя.

А вот максимальный угол монтажа кровельного покрытия игнорировать нельзя. Если превысить его, то крыша рискует остаться «раздетой» при сильном ветре.

Чердак или мансарда?

Как вы собираетесь использовать подкровельное пространство?

Если планируете просто сделать на нем чердак, тогда уклон кровли значения не имеет — для хранения вещей места хватит. Другое дело, если под скатами будет мансарда. Тогда на угол наклона крыши стоит обратить внимание.

Полезная площадь под односкатной крышей зависит от угла ее наклона больше всего. Этот тип кровли опирается на две стены или подпорки возле них. Следовательно, если крыша очень пологая, то полезная площадь мансарды получается почти такой же, как у нижних этажей. За исключением небольшого участка у стены под нижней частью ската.

Для двускатной, вальмовой, шатровой крыши угол наклона ската имеет значение, если стены дома не заканчиваются в полуметре от перекрытия, а выгнаны на высоту 1,5 м, лучше 2 м. В этом случае пологая кровля не увеличивает доступное пространство — оно и так большое, — а сильно снижает расходы на отопление.

Подведем итоги

Какой должен быть уклон крыши? Зависит от четырех факторов:

  • снеговой нагрузки;
  • парусности;
  • вида кровельного материала;
  • назначения подкровельного пространства.

Для уменьшения снеговой нагрузки скаты лучше сделать крутыми — при угле 60° и более она равна нулю. Но такую кровлю делают редко, поэтому минимально возможный уклон крыши рассчитывают, исходя из допустимой нагрузки на конструкции.

Так как для снижения парусности правильно сделать уклон крыши небольшим, этот параметр вступает в противоречие с предыдущим. Поэтому в регионах с нормальной ветровой нагрузкой оптимально делать уклон кровли 30-45°.

Кроме того, у многих видов кровельных материалов есть минимально и максимально допустимые углы монтажа. Влияет на уклон и то, что будет под кровлей: чердак или мансарда.

Читать еще:  Водоотвод ACO Profiline для террасы и эксплуатируемой кровли

Расчет ветровой нагрузки

Основные повреждения, которые получают здания при порывистых ветрах, приходятся, в основном, на крышу. По телевизору, в интернете мы можем увидеть достаточно много наглядных примеров того, как не только отдельные элементы крыши, но и вся крыша, полностью, срывается под порывами ураганного ветра. Почему же происходят подобные случаи? Давайте рассмотрим механику подобных явлений и попробуем сделать расчет ветровой нагрузки.

  1. Ветровые потоки
  2. Силы, действующие на крышу
  3. Расчет ветровой нагрузки
  4. Как бороться с ветровыми «проказами»?
  5. Уважаемые посетители!

Ветровые потоки

Расчет ветровой нагрузки учитывает направление господствующих ветров. При фронтальном направлении ветра происходит столкновение с фасадной частью здания и крышей. У вертикальной поверхности поток создаёт вихревые разнонаправленные векторы, — происходит деление на нижнюю, боковую и вертикальную составляющие:

  1. нижнее направление – самое безопасное для здания, так как все усилия направлены в сторону фундамента, то есть одной из самой прочной и массивной части дома.
  2. боковые составляющие воздействуют на фасадные части здания, окна, двери.
  3. вертикальный поток направлен прямо на свес крыши и создаёт подъёмное усилие, стремящееся приподнять кровлю, сдвинуть её с места.

Атака ветрового потока, направленная на скат крыши, образует три усилия, влияющие на расчет ветровой нагрузки, стремящиеся сдвинуть кровлю:

  • касательное, скользящее вдоль кровли, огибающее конёк и, захватывая свободные молекулы воздуха, уходящее прочь, стремясь, при этом, опрокинуть крышу;
  • перпендикулярное скату кровли, создавая давление, способное вдавить элементы кровли внутрь конструкции крыши;
  • и, наконец, из-за разницы давлений воздушной массы (с наветренной стороны образуется зона высокого давления, а с подветренной стороны – низкого), в верхней, подветренной, стороне строения образуется подъемная тяга, как у крыла самолета, стремящаяся поднять крышу.

Силы, действующие на крышу

Проанализировав все усилия воздушных потоков, можно сделать вывод, что при высокой наклонной кровле ветер образует силы, стремящиеся опрокинуть крышу. Но чем больше угол наклона крыши, тем меньше действуют на нее касательные силы и больше – перпендикулярные скату.

Пологие скаты способствуют созданию больших подъёмных сил, старающихся приподнять конструкцию, отправив её в свободный полёт.

Расчет ветровой нагрузки

Как видим, если не подойти серьезно к учету ветровой нагрузки на крышу, то может произойти беда. Как и кто может это сделать?

Расчёт ветровой нагрузки на крышу, в зависимости от высоты её местонахождения над уровнем земли, определяется специалистами-проектировщиками по формуле:

Wр = 0,7 * W * k * C.

  • W – нормативная величина усилия, создаваемого напором воздуха; определяется по картам в приложении к СП 20.133330.2011;
  • k – коэффициент, показывающий зависимость давления от высоты над срезом верхнего уровня земли;
  • C – аэродинамический коэффициент, учитывающий направление «набегания» воздушного потока на скат крыши.

Таблица коэффициента k для типов местности:

Типы местности:

  • A – открытые пространства на побережьях морей, озёр, водохранилищ, пустыня, степь, лесостепь, тундра;
  • B – населённые пункты, лес, местность с равномерно распределёнными искусственными строениями с высотой больше 10 метров;
  • C – территория города с плотным расположением строительных сооружений высотой более 25 метров.

Таблица значений коэффициента С для двускатной кровли при векторе потока в скат крыши:

Таблица значений коэффициента С для двускатной кровли при направлении потока во фронтон крыши:

Положительная величина аэродинамического коэффициента означает, что ветер давит на поверхность. Отрицательные показатели – поток создаёт разрежение у поверхности кровли, иными словами – «отсос» воздушной подушки.

Зависимость давления, создаваемого потоком воздуха от высоты здания

Как бороться с ветровыми «проказами»?

Во избежание разрушений строители нижние концы стропил надежно прикрепляют к вмонтированным в стену кронштейнам. Если неизвестно, с какой стороны будет направление господствующих ветров, то стропила закрепляют подобным образом по всему периметру здания. Общую устойчивость каркаса крыши обеспечивают ее элементы — подкосы, раскосы и связки, сечение которых рассчитано, исходя из тех природных условий, в которых ведется строительство или ремонт здания.

Уважаемые посетители!

Мы с удовольствием ответим на возникшие вопросы. Для этого Вы можете:

позвонить по номеру: +7 (495) 669 31 74

или отправить сообщение по адресу: info@bta.ru

и получить подробную консультацию.

Ветровая нагрузка.Нагрузки, действующие на несущую конструкцию скатных крыш

Нагрузка на крышу дома от ветра и снега

Крыша представляет собой верхнюю конструкцию дома, обеспечивающая его защиту от различных воздействий окружающей среды. Крыша возлагает на себя огромное количество нагрузок по снеговому покрову, ветровой нагрузке, таких явлений природы как дождь, перепады температуры и иные физико-механические факторы. Рассмотрим два основополагающих фактора, воздействующие на долговечность и прочность крыш:

Снеговая нагрузка

Строительными нормами при проектировании и постройке крыш, обязательно учитывается расчет снеговой нагрузки на крышу. Расчет воздействия веса снегового покрова производится с учетом особенностей региона места строительства.

Эта информация предоставляется районными строительными организациями или устанавливается по СНиП 2.01.07-85c с заголовком «Нагрузки и воздействия», а точнее по картам с изменениями «Изменения к СНиП 2.01.07-85». В данных изменениях переизданы ряд карт, в их числе и карты районирования снегового покрова.

Использованные иллюстрации карт Украины в статье приведены c нагрузками снегового покрова, а далее и ветровой нагрузки, в единицах измерения давления Па. Чтобы выявить практическое значение измерения, математическое значение Па умножается на коэффициент 0,102 килограмм силы на метр квадратный, получаем искомое значение. Например, 400 Па*0,102=40,8 кг/кв. м, получаем вес нагрузки снегового покрова в килограммах на метр квадратный покрытия конструкции.

Проектные расчеты несущих конструкций строений производятся методом расчета по предельным состояниям. Это метод расчета по разрушающим усилиям, при которых конструкция теряет способность сопротивляться воздействиям внешних факторов.

Существуют расчеты предельных состояний двух групп: первая – характеризует собой несущую способность; вторая – пригодность к общей эксплуатации.

В первой группе расчеты по предельным состояниям выполняются для предотвращения потери устойчивости формы (расчет устойчивости тонкостенных сооружений и т.п.), положения (расчет на скольжение и опрокидывание и т.п.) и разрушения от неблагоприятного воздействия внешней среды. Эти условия записываются формулами такого вида: ? ? R или ? ? R, которые обозначают, что напряжения при приложенной нагрузке не положено превышать предельно допустимых.

Вторая группа расчетов предотвращает чрезмерные деформации от нагрузок. Допустимы раскрывающиеся узлы сочленений, прогибы, однако, в целом не происходит разрушений, эксплуатация в дальнейшем возможна, но после ремонта. Формула этого условия: f ? fнор, означающая предельность допустимого прогиба при появляющейся нагрузке в конструкции. Прогиб балки L/200 см.

Оба предельные состояния участвуют в расчетах стропильных систем скатных крыш. Целью расчетов является недопустимость разрушения конструкции или прогиба, что выше допустимых пределов.

Для снеговой нагрузки, действующей на несущую конструкцию крыши, каркас рассчитывают согласно 1-й группе состояний – на полный снеговой вес сплошного покрова Q. Данный случай говорит только о весе покрова, обозначим эту нагрузку Qр.сн.. Вторая группа состояний ведет расчет на снеговую нагрузку с коэффициентом 0,7Q, нормативную нагрузку веса снега обозначим Qн.сн..

Преобладающее направление ветров и уклон крыши дает разный снеговой покров, иногда больший, чем на плоской крыше. При возникновении снежного бурана или небольшой метели, подхваченные снежинки ветром, перемещаются на подветренную сторону. Проходя конек, как препятствие крыши, снижается скорость движения снежинок в нижних потоках воздуха, и они оседают на покрытие. Результат этого явления — снега меньше с одной стороны крыши, а больше лежит с другой.

Увеличение и снижение снеговых нагрузок на крышу, которые зависят от угла наклона и направления ветра, обозначаются коэффициентом µ. Приведем пример двухскатной крыши с углами скатов между 20° и 30°. В этом случае со стороны наветренной лежит 75% снега, который мог бы лежать на плоской крыше, а с подветренной стороны обнаружится 125% снега.

Другие значения коэффициентов µ приведено на рис. и в СНиП 2.01.07-85.

Снеговым «мешком» назван скапливающийся слой снега, превышающий толщину среднего нормативного показателя. Места высокой вероятности возникновения снегового «мешка», укрепляют спаренными стропильными ногами и сплошной обрешеткой. Также, вне зависимости основного покровного материала, делают подкровельную подложку, чаще из оцинкованной стали.

Снеговой «мешок» имеет свойство сползать на свес кровли, что может обломить его, поэтому при расчете конструкции размеры свеса соблюдают согласно рекомендациям изготовителя кровельного материала. Как пример шиферной кровли – свес относят к равным 10 см.

Направление ветра, что преобладает в данном регионе, определяют по розе ветров. Согласно проведенным расчетам с подветренной стороны устанавливаются спаренные стропила, с наветренной – одиночные. Если же данные не установлены, в расчетах следует учитывать максимальную нагрузку, так если бы все скаты подвержены большим давлениям покрова с подветренной стороны.

При увеличении угла наклона скатов снеговой покров уходит вниз с крыши под своим давлением. Углы ската превышающие 60° совсем не оставляют на крыше снега. В этом случае коэффициент µ равняется нулю. Промежуточное значение углов ската µ находится методом усреднения. Как пример, для скатов с 50° углом наклона коэффициент µ равен 0,33, для 40° — 0,66.

Таким образом видим, что для выбора сечения стропил, шага установки их, расчетная нагрузка, также нормативная расчетная нагрузка от веса учитывающая углы наклонов скатов (Qн.сн и Qр.сн), рассчитывают так — полную нагрузку от веса (Q) умножают на коэффициента µ:

Qр.сн = Q?µ — для первой группы предельного состояния (прочность);
Qн.сн = 0,7Q?µ — для второй группы предельного состояния (прогиб).

В регионах застройки, где средняя скорость ветра зимних всех трех месяцев более 4 м/с, на крышах с уклоном 12 — 20% (примерно 7 — 12°), случается частично снос покрова с крыши. В данном случае величина расчетной нагрузки от веса должна быть приуменьшена при применении коэффициента c = 0,85. В других случаях расчетов для скатных крыш применяют коэффициент c = 1. Конечные формулы выявления расчетной нагрузки, также и расчетной нормативной нагрузки от веса покрова, которые учитывают ветровой снос снега и наклон скатов, выглядят так:

Qр.сн = Q?µ?c — формула под первое предельное состояние (прочность);
Qн.сн = 0,7Q?µ?c — под второе предельное состояние (прогиб)

Уменьшение снеговой расчетной нагрузки c=0,85 не находит распространения: на крыши конструкций в районах со средней температурой воздуха в зимнем месяце январь более -5°С, так как образующаяся периодами наледь дает препятствия сносу покрова снега ветром; на крыши сооружений, которые защищены от прямого действия ветра соседствующими более высокими конструкциями или лесополосой, удаленной меньше чем на 10h, где h — подразумевается различность высот соседствующего и проектируемого зданий. Среднесуточную температуру января и скорость ветра можно определить по картам с изменениями «Изменения к СНиП 2.01.07-85» либо узнать лично в том районе в котором вы реши строить деревянный дом.

Ветровая нагрузка

Ветровая нагрузка на крышу при боковом давлении воздушного потока несет столкновение с крышей и со стеной здания. Завихрение потока, происходящее у стены, частично уходит к фундаменту, другая часть потока по касательной стены производит удар о свес крыши. Атака ветрового потока огибает касательно конек крыши с захватом спокойных молекул воздуха со стороны подветренной и уходит прочь. Исходя из этого, сил способных сорвать кровлю или опрокинуть ее, возникает сразу три. Одна – сила подъема, которая образуется при разности давления воздуха со стороны подветренной, и две другие силы – касательные со стороны наветренной.

Возникает еще одна сила, способная вдавить склон крыши, действующая перпендикулярно скату. Касательные и нормальные силы могут изменять свое значение в зависимости от угла наклона ската. Понятно, что чем больше величина угла наклона кровли, тем большее влияние принимают силы нормальные и меньше касательные. На крышах пологих принимают большое значение касательные силы, увеличиваясь в своей подъемной силе со стороны подветренной, таким образом, уменьшается нормальная сила со стороны наветренной.

А теперь давайте посмотрим, как происходит расчет нагрузки. Кстати, на карте Украины вам вновь придется переводит Паскали в килограммы, как мы это делали при расчете снеговой нагрузки.

Расчет ветровой нагрузки w, зависящей от высоты z над землей, определяется по такой формуле: Wр = W?k(z)?c, в которой W – расчетное значение давления ветра, определяемое по карте «Изменениях к СНиП 2.01.07-85»; а коэффициент k учитывает изменения ветрового давления для z, определим по таблице; коэффициент c – учитывает изменения всех направлений давления нормальных сил, в зависимости от расположения ската к наветренной или подветренной сторон.

Аэродинамические коэффициенты со знаком «плюс» определяют направление создаваемого давления ветра на поверхность (давление активное), «минус» — от соответствующей поверхности (отсос). Линейной интерполяцией находятся промежуточные значения нагрузок. При затрудненном использовании таблиц 3, 4 на рисунке про аэродинамические коэффициенты ветровой нагрузки, практикуют выбор наибольшего значения коэффициентов для определенных углов наклона крыш.

Крыши с крутым углом наклона, ветер разрушает опрокидыванием, пологие крыши – срываются. Для избегания разрушения, строители нижние концы стропильных ног прикрепляют скруткой из проволоки к ершу, который вбит в стену. Ерш представляет собой штырь из металла с насечками предотвращающие выдергивание, изготавливают способом ковки. Если неизвестен факт стороны, с которой ожидается сильный ветер, то лучше стропильные ноги прикрутить через одну по периметру всего здания – стороны с умеренным ветром, и каждую ногу – в районе с сильным воздушным давлением. Укрепление стропил можно произвести другим образом – концы проволоки заложить в укладку стен во время строительства. Чтобы не испортить внешний фасад, концы проволоки выпустить внутрь чердачного помещения. Удобна в таком использовании отожженная стальная проволока, с диаметрами начиная от 4 мм и до 8 мм.

Общую устойчивость каркаса крыши обеспечивают подкосами, раскосами и связками по диагонали. Способствует стропильной системе использование устройства обрешетки.

Вот таким образом и происходит расчет ветровой нагрузки на крышу.

Если вы внимательно читали, то должны были понять, что вообще их себя представляют ветровая и снеговая нагрузка для вашего будущего дома. Если отнесетесь не серьезно к этому делу, то может произойти беда. Это еще не все виды нагрузок. Оставшиеся виды описываются в другой статье.

Сбор нагрузок на кровлю и стропила

Вы сами собираетесь проектировать и строить дом? Тогда Вам без процедуры сбора нагрузок на кровлю (или другими словами, на несущие конструкции крыши) не обойтись. Ведь только зная нагрузки, которые будут действовать на кровлю, можно определить минимальную толщину железобетонной плиты покрытия, рассчитать шаг и сечение деревянных или металлических стропил, а также обрешетки.

Ветровая нагрузка

Ветровая нагрузка: как спроектировать надежную кровлю

Крыша любого здания принимает на себя максимальную нагрузку. Перепады температуры, осадки, а также порывы ветра – все эти факторы постоянно влияют на верхнюю конструкцию постройки. Чтобы не переживать о сохранности кровли, а с ней и всего здания, важно заложить правильные данные на этапе проектирования. Так, обязательно учитывается ветровая нагрузка. Что же необходимо знать, чтобы обезопасить свой дом от непогоды?

Чем опасна ветровая нагрузка для кровли

Сильный боковой ветер, сталкиваясь с домом, разделяется на два потока: один направляется к фундаменту, а второй наносит удар по кровле. Поток огибает конек крыши и, сталкиваясь с молекулами спокойного воздуха, уходит. Таким образом, на крышу направлено сразу четыре удара, которые могут привести к деформации покрытия или даже к срыву кровли:

  • Поток воздуха, направленный снизу вверх, бьющий по свесу крыши;
  • Поток, огибающий крышу, бьющий по ее коньку;
  • Разность давлений на подветренной стороне в месте, где встречается ветер и спокойный воздух;
  • Вдавливающая сила потока, действующая перпендикулярно скату крыши.

рис.№1 Ветровая нагрузка на крышу

Влияние этих сил может попросту опрокинуть верхнюю конструкцию. Чем больше угол наклона кровли, тем сильнее на нее действует потоки воздуха, направленные на конек крыши. На пологую крышу в большей степени действую касательные силы, образующиеся с подветренной стороны.

Правильный расчет ветровой нагрузки позволяет избежать таких негативных последствий влияния потоков воздуха на верхнюю конструкцию.

Как снеговая нагрузка, так и ветровая нагрузка, неучтенная на этапе проектирования, может привести к деформации или необратимым повреждениям кровельной конструкции. Однако, если расчет снеговой нагрузки на кровлю производится довольно просто – количество осадков и их примерный вес легко можно определить даже самостоятельно, то измерение силы воздушных потоков – не сама простая задача.

Определить ветровые нагрузки поможет СНиП. В Строительных Нормах и Правилах представлены все необходимые данные, необходимые для расчета ветровой нагрузки по районам.

Стоит отметить, что вычислить значение ветровой нагрузки на кровлю и правильно рассчитать запас прочности верхней конструкции требует применения большего количества данных и формул, чем при расчете снеговой нагрузки. Упростит подсчет ветровой нагрузки расчет онлайн, однако такой калькулятор не всегда удобно использовать, кроме того, результаты будут гораздо точнее, если будут выведены по всем правилам СНиП.

Ветровая нагрузка: пример правильного вычисления

Чтобы правильно определить ветровую нагрузку, СНиП предлагает формулу: W=Wo*k.

Wo – показатель максимального значения воздушного потока в зависимости от региона.

K – коэффициент высотности здания, также предусмотренный в Строительных Нормах и Правилах в зависимости от места расположения постройки.

рис.№3 Коэффициент высотности зданий

Итак, имеем крышу здания высотой 5 метров, расположенного в прибрежном районе 3 региона. В этом случае, расчет ветровой нагрузки будет выглядеть так:

Показатели снеговой и ветровой нагрузки суммируем, добавляем показатель постоянной нагрузки: вес обрешетки и других элементов конструкции. Получившуюся цифру, в случае не круглого или не целого числа, округляем в большую сторону, и, с помощью таблицы СНиП, определяем необходимую длину и сечение стропил.

Дополнительные меры безопасности для кровельных конструкций

Учитывая, что сильные потоки ветра опасны, как крутым, так и пологим крышам, во время проектирования и строительства необходимо особое внимание уделить закреплению стропил.

Наряду с подсчетом ветровой нагрузки на здание, предотвратить последствия сильных порывистых потоков воздуха поможет дополнительное закрепление стропильных ног скруткой из проволоки. Проволока наматывается на «ерши» – металлические штыри с насечками, предотвращающими выдергивание, вбитые в стену. Если направление основной ветровой нагрузки на здание неизвестно – таким образом следует закрепить стропильные ноги через одну по периметру всего дома.

Еще один способ укрепления стропил – закладка концов проволоки, держащей стропильную ногу, в укладку стен.

Факторы, также влияющие на надежность кровельной конструкции:

  • Правильный монтаж каркаса с установкой подкосов и раскосов, диагональных связок стропил. Прочная обрешетка станет опорой для всей конструкции;
  • Усиление уже возведенной верхней конструкции с помощью проволочных скруток;
  • Правильный выбор размера стропил.

рис.№4 Длина и размеры стропил

От точности расчетов ветровой нагрузки здания будет зависеть не только сохранность вашего дома или другой постройки, но и безопасность окружающих. Именно поэтому так важно со всей ответственностью подойти к этапу проектирования. Несколько несложных вычислений помогут возвести долговечную и безопасную конструкцию, которая прослужит вам долгие годы.

Читать еще:  Гидроизоляция крыши дома под металлочерепицу – виды и монтаж

Расчет ветровой нагрузки по формуле

Что такое ветровая нагрузка

Переток воздушных масс вдоль поверхности земли происходит с разной скоростью. Натыкаясь на какое-либо препятствие, кинетическая энергия ветра преобразуется в давление, создавая ветровую нагрузку. Это усилие может ощутить любой человек, двигающийся навстречу потоку. Создаваемая нагрузка зависит от нескольких факторов:

  • скорость ветрового потока;
  • плотность воздушной струи,— при повышенной влажности, удельный вес воздуха становится больше, соответственно, возрастает величина переносимой энергии;
  • форма стационарного объекта.

  • Расчёт усилий ↓
  • Расчёт ветровой нагрузки на крышу ↓
  • Пример расчёта ↓
  • Альтернативная энергетика ↓

В последнем случае на отдельные части строительного сооружения действуют силы, направленные в разные стороны, например:

  1. На вертикальную стену действует так называемое лобовое усилие, стремящееся сдвинуть объект с места. Противостоять этому усилию помогают несколько конструктивных решений:
  2. На крышу, кроме горизонтальных усилий (вдавливающих), действуют и вертикальные силы, образующиеся от разделения воздушного потока при ударе о стену. Вектор воздушного потока стремится поднять крышу, оторвать её от стен.
  3. Совокупность всех этих вихревых потоков создают ветровую нагрузку не только на крупные элементы здания, но распространяет свои влияния на все элементы строительного сооружения, — двери, окна, кровлю, водостоки, антенну, дымоход.

Расчёт усилий

Общая формула расчёта создаваемых усилий на вертикальную поверхность:

  • Wm – норматив средней величины ветрового усилия на высоте h над землёй;
  • Wo – норматив ветрового давления, зависящий от ветрового района; определяется согласно СНиП 2.01.07-85: карта 3, приложение 5; данные приведены в таблице 1;
  • k – коэффициент пульсаций, таблица 2;
  • C – аэродинамический коэффициент, зависящий от геометрии строительного сооружения, например, для наветренных фасадов его значение составляет 0,8.

Таблица 1. Норматив ветрового давления Wo:

Норматив ветрового давленияВетровые районы
IaIIIIIIIVVVIVII
Wo, кПА0,170,230,300,380,480,600,730,85
Wo, кгс/м²1723303848607385

Таблица 2. Коэффициент пульсаций давления ветрового потока k:

Высота h над уровнем земли, мКоэффициент k для различных типов местности
ABC
50,851,221,78
100,761,061,78
200,690,921,50
400,620,801,26
600,580,741,14
800,560,701,06
1000,540,671,00
1500,510,620,90
2000,490,580,84
2500,470,560,80
3000,460,540,76
3500,460,520,73
4800,460,500,68

Пример: Стена.

Для местности типа В с высотой над уровнем земли 10 метров:

  • коэффициент k = 1,06;
  • для района вида III норматив ветрового давления Wo = 38 кгс/м²;
  • для плоского фасада аэродинамический коэффициент C = 0,8.

Создаваемое усилие на один квадратный метр составит:

Wm = 38 кгс/м² * 1,06 * 0,8 = 32,224 кгс/м²

При высоте стены в 15 метров и ширине 25 метров общая ветровая нагрузка равна:

15 м * 25 м * 32,224 кгс/м² = 12084 кг или 12,084 тонны.

Окно.

На типовое окно с площадью 3 м² ветер будет давить с силой:

3 м² * 32,224 кгс/м² = 96,672 кг, — почти 100 кг.

Расчёт ветровой нагрузки на крышу

Основные повреждения на здании при сильных порывах ветра связаны с кровелькой конструкцией. По телевизору и в интернете приведено достаточно много наглядных примеров, как не только отдельные элементы кровли, но полностью вся крыша срывается под воздействием ветровой нагрузки.

При фронтальном направлении ветра происходит столкновение с фасадной частью здания и крышей. У вертикальной поверхности поток создаёт вихревые разнонаправленные векторы, — происходит деление на нижнюю, боковую и вертикальную составляющие.

  1. Нижнее направление – самое безопасное для здания, так как все усилия направлены в сторону фундамента, то есть одной из самой прочной и массивной части дома.
  2. Боковые составляющие воздействуют на фасадные части здания, окна, двери.
  3. Вертикальный поток направлен прямо на свес крыши и создаёт подъёмное усилие, стремящееся приподнять кровлю, сдвинуть её с места.

Воздушный поток, направленный на скат крыши, образует:

  • касательное движение, скользящее вдоль кровли, огибающее конёк и уходящее прочь, — эта сила стремится сдвинуть крышу с места;
  • перпендикулярное усилие, — нормаль, направленное внутрь кровли, создающее давление, могущее вдавить элементы крыши внутрь конструкции;
  • с подветренной стороны ската крыши создаётся обратная сила, способствующая созданию подъёмной силы, — как у крыла самолёта.

Расчёт воздушной нагрузки на крышу, в зависимости от высоты её местонахождения над уровнем земли, определяется по формуле:

  • W – нормативная величина усилия, создаваемого напором воздуха; определяется по картам в приложении к СП 20.133330.2011;
  • k – коэффициент, показывающий зависимость давления от высоты над срезом верхнего уровня земли (таблица 3);
  • C – аэродинамический коэффициент, учитывающий направление набегания воздушного потока на скат крыши (таблица 4 и 5).

Таблица 3. Коэффициент k для типов местности:

Высота над уровнем земли, метрТип местности
ABC
≤ 50,750,50,4
101,250,650,4
201,250,850,55
401,51,10,8
601,71,31,0
801,851,451,15
1002,01,61,25
1502,251,91,55
2002,452,11,8
2502,652,32,0
3002,752,52,2
3502,752,752,35
≥ 4802,752,752,75

Типы местности:

  • A – открытые пространства на побережьях морей, озёр, водохранилищ, пустыня, степь, лесостепь, тундра;
  • B – населённые пункты, лес, местность с равномерно распределёнными искусственными строениями с высотой больше 10 метров;
  • C – территория города с плотным расположением строительных сооружений высотой более 25 метров.

Таблица 4. Значение коэффициента С для двускатной кровли при векторе потока в скат крыши:

Угол наклона άFGHIJ
15°-0,9-0,8-0,3-0,4-1,0
0,20,20,2
30°-0,5-0,5-0,2-0,4-0,5
0,70,70,4
45°0,70,70,6-0,2-0,3
60°0,70,70,7-0,2-0,3
75°0,80,80,8-0,2-0,3

Таблица 5. Значение коэффициента С для двускатной кровли при направлении потока во фронтон крыши:

Угол наклона άFHGI
-1,8-1,7-0,7-0,5
15°-1,3-1,3-0,6-0,5
30°-1,1-1,4-0,8-0,5
45°-1,1-1,4-0,9-0,5
60°-1,1-1,2-0,8-0,5
75°-1,1-1,2-0,8-0,5

Положительная величина аэродинамического коэффициента означает, что ветер давит на поверхность. Отрицательные показатели – поток создаёт разрежение у поверхности кровли, иными словами – «отсос» воздушной подушки.

Пример расчёта

Дано:

  • здание находится на берегу большого внутреннего водоёма, местность относится к типу A;
  • кровля расположена на высоте 10 метров, то есть коэффициент равен 1,25;
  • преобладающие ветра направлены во фронтон крыши, отсюда аэродинамический показатель для крыши с наклоном ά = 30 равен C = -1,4;
  • норматив для района Поволжья W = 53 кгс/м².

Расчётное значение ветрового усилия составит:

Wр = 0,7 * 53 кгс/м² * 1,25 * (-1,4) = -64,925 кгс/м².

Отрицательное значение показывает, что имеется усилие, стремящееся оторвать кровлю от всего здания.

При общих размерах кровли S = 30 м², общее усилие составит:

P = 30 м² * (-64,925 кгс/м²) = -1947,75 кгс, то есть почти две тонны.

Альтернативная энергетика

Ветровая нагрузка может принести и пользу, например, преобразуя силу ветра в ветрогенераторах. Так, на скорости ветра V = 10 м/сек, при диаметре круга в 1 метр, ветряк обладает лопастями d = 1,13 м и выдаёт порядка 200–250 Вт полезной мощности. Электроплуг, потребляя такое количество энергии, сможет вспахать за один час порядка полсотки (50м²) земли на приусадебном участке.

Если применить большие размеры ветрогенератора, – до 3 метров, и средней скорости воздушного потока 5 м/сек, можно получить 1–1,5 кВт мощности, что полностью обеспечит небольшой загородный дом бесплатным электричеством. При внедрении так называемого «зелёного» тарифа, срок окупаемости оборудования сократится до 3–7 лет и, в дальнейшем, может приносить чистую прибыль.

Справка. «Зелёный» тариф – это выкуп государством излишнего электричества у населения, полученного при использовании альтернативных (возобновляемых) источников энергии.

Как расчитать снеговую и ветровую нагрузку на крышу

При проектировании крыши, нужно учитывать нагрузки, действующие на нее — снеговую и ветровую. Чтобы определиться с показателями этих величин, можно обратиться в специальную строительную организацию, где инженеры помогут вам с расчетами. Но если хотите все сделать самостоятельно и не сомневаетесь в своих силах, то здесь Вы найдете необходимые формулы с подробным описанием величин, которые понадобятся при расчёте. Итак, для начала разберемся, что же представляют из себя эти нагрузки и почему их обязательно необходимо учитывать.

Российский климат очень разнообразен. Важно понимать, что на крышу строящегося дома будут оказывать влияние изменение температур, ветровое давление, осадки и другие физико-механические факторы. Причем степень их влияния напрямую будет зависеть от района строительства. Всё это будет оказывать давление не только на ограждение крыши — кровлю, но и на несущие конструкции, такие как стропила и обрешётка. Надо понимать, что дом — это единая конструкция. По цепной реакции нагрузка от крыши передается на стены, а от них — на фундамент. Поэтому важно рассчитать все до мелочей.

Снеговая нагрузка

Снежный покров, образующийся в зимние периоды на крыше дома, оказывает на нее определенное давление. Чем севернее район, тем больше снега. Кажется, что и угроза поломок выше, но стоит быть более осторожным при проектировании дома в районе, где происходит периодическая смена температур, способная вызвать таяние снега и последующее его промерзание. Средний вес снега 100 кг/м3, а вот в сыром состоянии он может достигать 300 кг/м3. В таких случаях снеговая масса может стать причиной деформации стропильной системы, гидро- и теплоизоляции, что повлечёт за собой протечки кровли. Такие погодные условия скажутся и на быстром и неравномерном сходе снегового покрова с крыши, что может быть опасным для человека.

Чем больше уклон кровли, тем меньше снеговых отложений на ней будет задерживаться. Но если ваша кровля имеет сложную форму, то в местах стыка кровли, где образуются внутренние углы, может собираться снег, что будет способствовать образованию неравномерной нагрузки. Лучше устанавливать снегозадержатели в районах, где количество осадков достаточно велико, чтобы снег, собравшийся возле края карниза, не мог повредить систему водостока. Уборку снега можно осуществлять самостоятельно, но этот процесс нельзя назвать стопроцентно безопасным.

Для того, чтобы обеспечить безопасный сход снега и предотвратить образование сосулек, применяют систему кабельного обогрева. Ей можно управлять автоматически или вручную. Зависит от вашего желания и выбора. Нагревательные элементы такой системы располагают по всему краю крыши перед водосточным желобом.

Для России значение снеговой нагрузки будет зависеть от района строительства. Определить, какой вес снегового покрова будет в вашем районе, поможет специальная карта.

Технология расчета снеговой нагрузки: S=Sg*m, где Sg — расчётное значение веса снегового покрова на 1м2 горизонтальной поверхности земли, принимаемое по таблице, а m – коэффициент перехода от веса снегового покрова земли к снеговой нагрузке на покрытие.

Расчётное значение веса снегового покрытия Sg принимается в зависимости от снегового района Российской Федерации.

Определение снеговой нагрузки местности

Снеговой районIIIIIIIVVVIVIIVIII
Вес снегового покрытия Sg (кгс/м2)80120180240320400480560

Коэффициент m зависит от угла наклона ската кровли, при углах наклона ската кровли:

меньше 25 градусов m принимают равным 1

от 25 до 60 градусов значение m принимают равным 0,7 (примерно, для каждого уклона свое значение)

более 60 градусов значение m, в расчёте полной снеговой нагрузки, не учитывают.

Ветровая нагрузка

Ветер оказывает боковое давление на стены дома и крышу. Воздушный поток, сталкиваясь с препятствием, распределяется, уходя вниз к фундаменту и наверх в карнизный свес крыши. Если не рассчитывать давление ветра, то кровельное покрытие может просто сорвать от ураганного ветра. Такое разрушение не всегда можно исправить каким-то косметическим ремонтом, зачастую это приводит к необходимости замены кровли. Важным показателем при расчете воздействия ветра учитывают аэродинамический коэффициент. Он зависит от угла уклона кровли. Чем круче скат, тем нагрузка будет больше, и ветер будет стараться «опрокинуть» крышу. Если же угол вашей кровли небольшой, то ветер будет воздействовать на крышу подобно подъёмной силе, стараясь сорвать и отнести ее прочь. Для того, чтобы этого не случилось, нужно правильно соблюдать конструкцию кровли. Устойчивость стропильной системы зависит от обеспечения пространственной жесткости, которая складывается из правильного сочетания в ней раскосов, подкосов и диагональных связей, а также жесткого крепления их между собой. Помимо этого, ветер может переносить предметы, которые при столкновении с крышей будут оставлять механические повреждения. Чтобы этого не произошло, нужно внимательно выбирать кровельное покрытие и правильно организовывать обрешетку для его укладки.

Давление ветра, как и вес снегового покрова, будет зависеть от района строительства. Определить районирование можно по размещённой ниже карте.

Технология расчёта ветровой нагрузки

Коэффициент k, учитывающий изменение ветрового давления по высоте z, определяется по таблице ниже в зависимости от типа местности. Принимаются следующие типы местности:

А – открытые побережья морей, озёр и водохранилищ, пустыни, степи, лесостепи, тундра;

B – городские территории, лесные массивы и другие местности, равномерно покрытые препятствиями высотой более 10 м;

С – городские районы с застройкой зданиями высотой более 25 м.

Сооружение считается расположенным в местности данного типа, если эта местность сохраняется с наветренной стороны сооружения на расстоянии 30h – при высоте сооружения h до 60 м. и 2 км. – при большей высоте.

Высота z, мКоэффициент k для типов местности
≤ 50,750,500,40
101,000,650,40
201,250,850,55
401,501,100,80
601,701,301,00
801,851,451,15
1002,001,601,25
1502,251,901,55
2002,452,101,80
2502,652,302,00
3002,752,502,20
3502,752,752,35
≥ 4802,752,752,75

Примечание: при определении ветровой нагрузки типы местности могут быть различными для разных расчётных направлений ветра.

Ветровая и снеговая нагрузки при проектировании навесов

Особое внимание расчёту необходимо уделить тем, кто задумался о проектировании навеса – например, для беседки или стоянки автомобиля. Обычно в таких случаях используют экономичную конструкцию, не имеющую достаточную жесткость. Поэтому нельзя игнорировать давление снега. Рекомендуется чистить снег вовремя, не допуская образования снежного покрова толщиной более 30 см. Для навеса, выполненного из дерева, надёжнее будет сделать сплошную обрешётку и усиленные стропила. Если же вы выбрали металлическую конструкцию, то она должна иметь соответствующую толщину профиля. В любом случае, для выбора материалов необходимой жесткости, лучше использовать результаты расчета.

Примеры расчёта снеговой и ветровой нагрузок для Москвы и Московской области

Пример №1: Расчёт снеговой нагрузки

уклон кровли: 35 градусов

Найдем полное расчётное значение снеговой нагрузки S:

полное расчётное значение снеговой нагрузки определяется по формуле: S=Sg*m

по карте зон снегового покрова территории РФ определяем номер снегового района для Москвы: в нашем случае — это III, что соответствует по таблице весу снегового покрытия Sg=180 (кгс/м2);

коэффициент перехода от веса снегового покрова земли к снеговой нагрузке на покрытие для угла крыши в 35 градусов m=0,7

получаем: S=Sg*m = 180*0,7 = 126 (кгс/м2)

Пример №2: Расчёт ветровой нагрузки

уклон кровли: 35 градусов

высота здания: 20 метров

тип местности: городские территории

Найдем полное расчётное значение ветровой нагрузки W:

Расчётное значение средней составляющей ветровой нагрузки на высоте z над поверхностью земли определяется по формуле: W=Wo*k ,

По карте зон ветрового давления по территории РФ определяем для Москвы регион I

Нормативное значение ветровой нагрузки, соответствующее I району, принимаем Wo=23(кгс/м2)

Коэффициент k, учитывающий изменение ветрового давления по высоте z, определяется по табл. 6 k=0,85

Снеговые и ветровые нагрузки

При строительстве арочных ангаров необходимо учитывать факторы воздействия окружающей среды на строительный объект, так как они оказывают существенное влияние на прочность и долговечность конструкций при эксплуатации.

Одни из важнейших характеристик, на которые мы обращаем внимание при проектировании арочного ангара – это снеговые и ветровые нагрузки, т.е. внешнее давление которое будет оказываться на ангар посредством снега и ветра. Расчет указанных характеристик позволяет нам закладывать в будущее строение материалы со свойствами, которые выдержат все нагрузки в совокупности.

Расчет снеговой нагрузки производится согласно СНиП 2.01.07-85* или согласно СП 20.13330.2016. На данный момент СНиП является обязательным к исполнению, а СП носит рекомендательный характер, но в общем в обоих документах написано одно и тоже.

Снеговая нагрузка. Расчет

Для определения снеговой нагрузки необходимо:

Шаг 1. Определите номер вашего снегового района на карте


Рис. Карта снеговых районов РФ Часть 1


Рис. Карта снеговых районов РФ Часть 2 / Крым

Шаг 2. По номеру района в таблице определяем расчетную нагрузку

Нормативная
нагрузка
Sg (кгс/м2)

Расчетная
нагрузка
Sg (кгс/м2)

Шаг 3. Произвести расчет по формуле

Расчётное значение снеговой нагрузки определяется по формуле:

S=Sg*µ

Sg — расчётное значение веса снегового покрова на 1м2 горизонтальной поверхности земли, принимаемое по таблице.

µ — коэффициент перехода от веса снегового покрова земли к снеговой нагрузке на покрытие.

Коэффициент µ зависит от угла наклона ската кровли:

  • µ=1 при углах наклона ската кровли меньше 25°.
  • µ=0,7 при углах наклона ската кровли от 25 до 60°.
  • µ=не учитывают углах наклона ската кровли более 60°

Ветровая нагрузка. Расчет

Шаг 1. Определите номер вашего ветрового района на карте


Рис. Карта ветровых районов РФ

Шаг 2. По номеру района в таблице определить нормативное значение ветровой нагрузки

Ветровой районWo (кгс/м2)
0,17 (17)
I0,23 (23)
II0,30 (30)
III0,38 (38)
IV0,48 (48)
V0,60 (60)
VI0,73 (73)
VII0,85 (85)

Шаг 3. Произвести расчет ветровой нагрузки по формуле.

Расчётное значение средней составляющей ветровой нагрузки на высоте z над поверхностью земли определяется по формуле:

W=Wo*k*c

Wo — нормативное значение ветровой нагрузки, принимаемое по таблице ветрового района РФ.
с — аэродинамический коэффициент
k — коэффициент, учитывающий изменение ветрового давления по высоте, определяется по таблице, в зависимости от типа местности:

  • А — открытые побережья морей, озер и водохранилищ. пустыни, степи, лесостепи, тундра;
  • В — городские территории, лесные массивы и другие местности, равномерно покрытые препятствиями высотой более 10 м;
  • С — городские районы с застройкой зданиями высотой более 25 м.

При определении ветровой нагрузки типы местности могут быть различными для разных расчётных направлений ветра.

  • 5 м.- 0,75 А / 0.5 B .
  • 10 м.- 1 А / 0.65 B°.
  • 20 м.- 1,25 А / 0.85 B

С более подробным описанием определения ветровой нагрузки вы можете познакомиться в документе.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector