0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Методы защиты металлических конструкций от коррозии

Тема № 9. Методы защиты металлоконструкций от коррозии

Можно придать металлу повышенную коррозионную стой­кость при изготовлении, например легированием, но такой ме­талл получается очень дорогим, ибо легирующие присадки де­фицитны и дороги. Поэтому в строительстве используется обычная сталь, которую приходится защищать от коррозии уже в изделиях. Различают методы защиты от коррозии конструкций, работающих в атмосферных условиях и конструкций находящихся в почвенной среде, т.е. в заглубленных сооружениях.

Каждый такой метод объединяет большую группу способов Выбор способа и его реализация зависят от всестороннего учета ряда факторов, характеризующих как металл и конструкцию из него, так и агрессивную среду, условия протекания коррозионного процесса. Часто бывает так, что единственно возможен только один вполне определенный способ.

Методы защиты конструкций от коррозии в атмосферных условиях. Защиту конструкций осуществляют либо снижением агрессивного действия среды, либо изоляцией металла от нее. Первый метод — снижение агрессивного действия среды — эффективен при условии, что среда замкнута и изолирована. Примером может служить удаление агрессивных компонентов из воздуха помещений путем вентиляции или удаление из воды в теплоэнергетических установках кислорода как агрессивного фактора посредством ее аэрации и исключения подпитки неаэрированной водой.

Второй метод — изоляция металла от среды — весьма рас­пространен и не только в атмосферных условиях, но и в заглуб­ленных сооружениях. В зависимости от средств изоляции он охватывает ряд способов, но отличается тем, что для его осу­ществления слой изоляции должен быть толстым и прочным, кислотощелочестойким, а выполнение такой изоляции дорого и сложно.

В последнее время все больше используются полимерные и неорганические (силикатные) покрытия. Самые распространен­ные из них во всех видах техники, в том числе и строитель­ной — лакокрасочные. Более 80% металлоконструкций защи­щаются именно такими покрытиями.

Лаки, краски, а также различные смазки, хотя частично и проницаемы для воздуха и жидкостей, но широко применяются потому, что их просто наносить и они придают конструкциям красивый внешний вид.

Надежность и долговечность защитных покрытий зависят от многих факторов, в частности от качества подготовки по­верхности к их нанесению. В последнее время стали создавать в заводских условиях при изготовлении металлоконструкции металлическую подоснову под окрасочный состав из алюминия, цинка и других металлов, наносимых газопламенным способом, это продлевает срок службы покрытия и металла в 2 раза. Широкое распространение получили также грунтовки и основе смол, фосфатирующие и эпоксидные грунтовки. Противокоррозионные свойства грунтовок усиливаются введением в них таких пассивирующих пигментов, как свинцовый су­рик, цинковая пыль и др.

Для нанесения любого защитного покрытия металл зачи­щается до блеска и не позже чем в течение четырех часов на него наносятся грунтовка, потом шпаклевка, далее краска эмаль и сверху лак с перерывами для высыхания каждого слоя. Для верхних слоев применяют ПХВ эмали на основе сополи­мера хлорвинила с виниладенхлоридом, эпоксидные эмали.

Конструкции, работающие в условиях высокой влажности, защищаются эмалями на основе акриловой смолы.

Ингибиторы (соли легких металлов), добавленные в окра­сочный состав или использованные для пропитки оберточной бу­маги, в восемь-десять раз продлевают срок службы металла, а потому их считают химической броней металлов. Добавление ингибиторов в агрессивную среду, например кислоту, позволяет хранить ее в металлических емкостях. Обертывание ингибированной бумагой удобно тем, что на распаковку изделий и при­ведение их в рабочее состояние затрачивается минимум сил и средств.

В последние годы получил распространение способ защиты металлоконструкций без удаления продуктов коррозии, так как стоимость очистки и подготовки поверхности составляет около 40 % стоимости защитных мероприятий. Этот способ основан на растворении продуктов коррозии, например по рецепту Н.А.Назаровой, ортофосфорной кислотой, кровяной солью, толуолом и скреплении их эпоксидной смолой.

Методы защиты конструкций от почвенной коррозии. Такие методы подразделяются на ряд способов, связанных с исполь­зованием специальных материалов для защиты от воздействия внутренних факторов, а также на три группы методов, обеспе­чивающих защиту от воздействия внешних факторов. Исполь­зование специальных коррозионностойких материалов для кон­струкций подземных сооружений еще не получило достаточного развития. Для защиты металлоконструкций от почвенной кор­розии чаще всего служат покрытия на основе битумов и элек­трохимический метод.

Защитные битумные покрытия бывают трех типов: нормаль­ные, усиленные и весьма усиленные. Защита подземных кон­струкций покрытиями на основе битумов, как показал опыт эксплуатации, недостаточна. Действительно, первое время та­кие покрытия воздухо- и водонепроницаемы, надежно изоли­руют конструкции от внешней агрессивной среды. Однако в дальнейшем под воздействием грунтовой воды, кислорода воздуха, температурных деформаций конструкции и иных факторов как на сооружение в целом, так и на защитное покрытие нарушается их герметичность, открывается доступ электролит к конструкции и начинается электрохимическая коррозия

Дальнейшее развитие коррозии предотвращается электрохимической защитой, которая строится на основе теории многоэлектродных систем. Сущность такой защиты состоит в том, что защищаемая конструкция подвергается или катодной поля­ризации от специально установленных анодов из более актив­ного металла, или поляризации наложенным постоянным током от внешнего источника. Для прекращения почвенной кор розии надо, чтобы разность между катодным и анодным уча­стками конструкции равнялась нулю или чтобы электросопро­тивление протеканию тока коррозионного элемента (за счет изоляции) было очень большим.

Чтобы сделать разность по­тенциалов равной нулю, необходимо довести катодную поляри­зацию сооружения до общего потенциала, равного начальному потенциалу анодного участка.

В подобных условиях на всей поверхности защищаемой кон­струкции протекают лишь катодные процессы и она перестает корродировать. Потенциал, при котором прекращается корро­зия, называют защитным потенциалом, а плотность тока, обес­печивающую сдвиг потенциала до защитного,— защитной плот­ностью тока. Все это достигается одним из двух способов: протекторной или катодной (активной) защитой.

Электрохимическая защита металлоконструкций от почвен­ной коррозии производится с учетом характеристики грунтов, срока службы сооружения и других факторов, в том числе на­личия в зоне защищаемого сооружения блуждающих токов.

Протекторная защита подземных конструкций от коррозии осуществляется электродами-протекторами, обладающими более отрицательными потенциалами и выполняю­щими в паре с защищаемым сооружением роль анода.

Методика расчета протекторной защиты стальных трубопро­водов и гидроизоляции объемных сооружений различна и нами не рассматривается, но во всех случаях основным ее содержа­нием является определение защитного потенциала, защитной плотности тока.

Протекторы изготовляются обычно из магниевого сплава и создают разность потенциалов до 1 В; они могут быть также цинковыми и реже — алюминиевыми. Протекторы выполняются цилиндрическими или пластинчатыми. Они соединяются с со­оружением изолированным проводом через стальной сердечник, вставленный в протектор. Число протекторов n, необходимое для защиты конструк­ций, зависит от размеров защищаемой поверхности S (м 2 ), ми­нимальной защитной плотности j (А/м 2 , причем jст = 0,016 А/м 2 ); коэффициента k, характеризующего защищенность конструкции 462 (для обычных бетонов k = 0,2), силы тока протектора в данной среде iпрот и определяется по формуле

Продолжительность работы протектора в годах вычисляется по формуле:

Полученное по расчету число стандартных протекторов на­бирается из типовых элементов. Для надежного контакта про­тектора с грунтом и устойчивой работы он размещается в на­полнителе (гипс, глина, сернокислый натрий или магний). Срок службы протекторов составляет 10—15 лет.

Протекторную защиту выгодно применять при удельном со­противлении грунта более 60 Ом-м и в грунтах с кислой сре­дой, т. е. когда протекторы будут работать надежно.

Катодная (активная) защита осуществляется посредством постоянного тока, подаваемого через погруженный в грунт электрод (анодное заземление). При этом отрицатель­ный электрод постоянного тока присоединяется к защищаемому сооружению — катоду, а положительный — к аноду. Сооруже­ние поляризуется отрицательно; потенциал его становится отри­цательнее потенциала коррозионных анодных пар, и ток кор­розии прекращается. При такой защите разрушается дополни­тельный электрод, с которого ток стекает в грунт. В качестве электрода (анода) используются отходы — куски рельс, труб и т. п. При этом коррозия не прекращается, а лишь перено­сится на дополнительный элемент, который с течением времени может быть заменен, а защищаемое сооружение не разруша­ется, так как является катодом.

Необходимость катодной (наложенным током) защиты под­земных конструкций определяется показателем В в зависимо­сти от срока их службы, начальной и допустимой остаточной толщины металла, скорости коррозии:

Расчет катодной защиты предусматривает определение пло­щади внешней поверхности, например гидроизоляции подзем­ного сооружения, сечения арматуры железобетонной конструк­ции, защищаемой изоляцией, силы тока, необходимой для защиты, сопротивления току растекания анодного заземления, напряжения и мощности катодной станции.

Сравнение затрат на устройство и эксплуатацию протектор­ной и активной защит в расчете на десять лет показывает, что они примерно одинаковы.

Защита металлоконструкций от коррозии

Различают несколько видов агрессивных сред, оказывающих негативное воздействие на металлоконструкции: воздух, грунт, газ и жидкости (вода и химически активные составы). Уже на этапе проектирования предусматривается защита металлоконструкций от коррозии согласно действующим нормам в строительстве (СНиП).

Общие принципы

Все защитные способы условно выделены в две основные группы.

Первая предусматривает необходимые мероприятия непосредственно в процессе производства:

  • повышение стойкости к ржавчине путем определенных изменений в химическом составе материала;
  • изоляция металла от агрессивных воздействий.

Вторая группа охватывает методы противодействия в эксплуатационном периоде:

  • понижение степени агрессивности среды;
  • уменьшение коррозийных процессов, основываясь на действии закона гальваники.

Конкретные способы защиты металлоконструкций от коррозии имеют свои этапы подготовки и технологию выполнения, определяемые соответствующими ГОСТ и ТУ.

Известный и эффективный метод придания металлу высокой антикоррозийной стойкости. Это ничто иное, как популярная во всех сферах жизни «нержавейка» – сталь с введением в ее состав хрома, меди, вольфрама, никеля. Такие добавки придают пассивность металлу и заодно повышают его жаропрочные характеристики.

Защитные покрытия

Способ создания на поверхности защитного пленочного слоя, применяется как в промышленных масштабах, так и в быту.

1. Нанесение дополнительного металла, имеющего более высокие собственные антикоррозийные свойства – цинк, олово, хром, никель. Выбор одного из видов таких материалов и определяет название технологического процесса.

Самой распространенной защитой металлоконструкций от коррозии в этой подгруппе, является метод цинкования. Анодные покрытия создают электрохимическую защиту металла, в то время как катодные – только механическую. При нарушении последних, невосприимчивость основного материала к ржавчине исчезает.

Техника выполнения может быть разной:

  • погружение в горячий металл;
  • осаждение солей из электролита на изделии;
  • напыление плазменной струей (газотермический метод);
  • плакирование – одновременная горячая прокатка обоих металлов, обеспечивающая их прочное сцепление. В результате создается особый вид – биметалл.

Требование СНиП. Обязательная защита металлоконструкций от коррозии горячим цинкованием и плазменным напылением предусмотрена для соединений на сварке, болтах и заклепках, а также отдельных монтажных деталей.

2. Неметаллические покрытия

Суть такого способа заключается в изолировании металла от воздействия агрессивных факторов. Представляет собой:

  • покрытия органического происхождения – лакокрасочные смеси, смолы, полимерные пленки.

Краски для антикоррозийной обработки состоят из взвешенных частиц пигмента в органическом связующем, а лаки изготовлены на основе смолы с растворителем.

Лакокрасочные материалы (ЛКМ)хорошо заполняют все отверстия, они однородны, пластичны и имеют высокие адгезивные свойства. При правильном нанесении, подобная защита металлоконструкций от коррозии будет эффективна в течение 5 лет.

Требование СНиП. Стальные конструкции перед нанесением лакокрасочного состава должны быть очищены (степень 1). Уровень очистки алюминиевых поверхностей не нормируется.

Если добавить в состав краски или лака достаточное количество металлической пыли, то в этом случае ЛКМ приобретает улучшенные свойства. В результате уже получится покрытие с эффектом протектора.

  • неорганические – оксиды металлов, соединения хрома, эмали.

Хромирование выполняется диффузионным методом, а эмалирование проходит под действием высоких температур в заводских условиях. Недостаток эмалированных покрытий известен всем – они хрупкие и их несложно повредить при сильных механических воздействиях.

Хорошую защиту металлоконструкций от коррозии способна обеспечить прочная оксидированная пленка. Она получается в результате обработки металла растворами кислот.

Недостатком слоя из оксидов считается его невысокая стойкость во влажной среде, особенно в воде. Добавить прочности оксидной пленке можно дополнительной пропиткой маслами.

Требование СНиП. Химическое оксидирование алюминиевых конструкций производится с их последующим окрашиванием.

Коррозия – это самопроизвольный процесс, который может закончиться печальным образом. Главная задача состоит в том, чтобы еще до появления первых признаков ржавления металла, включая подповерхностные, провести необходимые профилактические процедуры.

Перечисленные способы противодействия ржавчине, широко распространены, но во многих случаях их применение возможно только в промышленных условиях. В быту приходится довольствоваться покрытием металла красками или лаками.

Антикоррозийная защита металлоконструкций

Обязательно ли нужна антикоррозионная защита металлоконструкций? Любые металлы, особенно черные, подвержены пагубному воздействию агрессивной среды. Влага — главный враг металлов. Именно под ее воздействием на поверхности металлов образуется слой оксидов. И если не препятствовать этому процессу, то в результате любое изделие из металла потеряет свою прочность. Антикоррозионная защита металлоконструкций является важнейшей процедурой в производстве любых изделий тяжелой промышленности.

Виды коррозии

За всё время работы с металлическими изделиями, люди выделили несколько видов коррозии металла:

  • Почвенная — тип коррозии, которая поражает конструкции, находящиеся в земле. Из-за особенного состава грунта, наличия грунтовых вод, происходят химические процессы, вызывающие появление ржавчины.
  • Атмосферная — процесс окисления, протекающий в ходе контакта водяных паров воздуха с металлической поверхностью. Чем больше вредных веществ в воздухе, тем быстрее появиться коррозия.
  • Жидкостная — такому виду коррозии подвержены металлоконструкции, находящиеся в воде. Если в жидкости содержится соль, процесс разрушения материала будет протекать быстрее.

Выбор антикоррозийного состава зависит от того, в какой среде будет эксплуатироваться металлическая деталь.

Характерные типы поражения ржавчиной

Существует несколько типов поражения стали коррозией. Они различаются по внешнему виду и глубине поражения материала:

  • Поверхностная коррозия. Представляет собой слой ржавчины, который может распространяться по всей поверхности изделия или находиться на отдельных его местах.
  • Ржавчина в отдельных местах, которая начинает уходить вглубь материала.
  • Образование глубинных трещин.
  • Окисления одного компонента из металлического сплава.
  • Ржавчина по всей поверхности, которая уходит вглубь материала.

Нормы и правила СНиП относительно защиты металла

Защита строительных конструкций от коррозии предусматривается еще на начальном этапе проектирования. Все затраты, направленные на защиту, включаются в стоимость изделия. Определение в строительных нормах и правилах (СНиП) называет такие методы защиты конструктивными. Это же определение гласит, что основной задачей методов защиты металлоконструкций является выбор материалов, способных ограничить доступ агрессивной среды к металлическим поверхностям, и способов их нанесения.

Кроме выбора специального покрытия для металлов, СНиП рекомендует и методы оптимального режима использования конструкций из металла:

  • устранение на поверхностях конструкций любых щелей или углублений, в которых может накапливаться влага или образовываться своеобразная аномальная температурная зона, способная привести к порче антикоррозийного покрытия;
  • защиту конструкций от брызг и водяных капель;
  • введение в агрессивную среду специальных ингибиторов.

Пассивная антикоррозийная защита металлоконструкций

Менее эффективной на данный момент видится пассивная защита строительных конструкций от коррозии. Заключается она в нанесении на поверхность любого лакокрасочного покрытия. Такая защита стальных конструкций не может быть эффективной на протяжении большого промежутка времени по нескольким причинам:

  • металлы отличаются очень хорошей теплопроводностью, следовательно, лакокрасочное покрытие будет многократно подвергаться перепадам температур и быстро (в течение 5 лет) придет в негодность;
  • перед нанесением лакокрасочного покрытия, защищаемую поверхность необходимо подвергать специальной очистке от оксидной пленки, после этого поверхность грунтуется, и лишь потом наносится основной слой защиты. Для объемных стальных конструкций такая технология нанесения защиты является слишком трудоемким процессом.

В настоящий момент отмеченные недостатки частично устранены: появились новые химические составы для обработки, которые самостоятельно справляются как с оксидной пленкой, так и со ржавчиной. Как правило, такие средства поступают к изготовителю конструкций в раздельном варианте и смешиваются непосредственно перед нанесением. Производители этих средств обещают защитить каждую стальную конструкцию при любых погодных условиях на протяжении десятилетий.

Активные методы защиты

К активным методам защиты можно отнести методы специальной обработки металла. Для повышения стойкости ферросплавов и изделий из них применяют:

  • горячее цинкование деталей. Деталь или конструкция обезжиривается, подвергается пескоструйной обработке или травлению кислотой и покрывается тонким слоем расплава цинка в специальной вращающейся ванне. В результате химической реакции на поверхности образуется защитная пленка, экранирующая металл от доступа влаги, образующая гальвано пару со сталью и способная самовосстанавливаться после небольших повреждений. В качестве сырья для горячей металлизации могут применяться и другие металлы. Этот метод особенно хорош для крупных объектов (судов, баков, цистерн) ;
  • электрохимическое (гальваническое) цинкование, которое основано на принципе диффузионного извлечения ионов цинка из слабокислого раствора при электролизе. Обрабатываемые детали и источник цинка (пластины, шары, болванки) помещаются в ванну с электролитом, через которую в дальнейшем пропускается электрический ток. В процессе электролиза цинк, являясь анодом, растворяется и оседает на стальной поверхности, придавая ей высокодекоративный блестящий вид. Однако адгезионные свойства полученного покрытия невелики, а сам процесс производства экологически вреден и трудоемок. Гальваническая обработка металлов применяется для обработки метизов и деталей средних размеров;
  • термодиффузионное нанесение цинкового покрытия. Суть метода состоит в проникновении атомов цинка из цинкосодержащего порошка в поверхность железа при очень высокой температуре (в диапазоне 290-450˚С). При этом покрытие получается очень твердым и износостойким, в точности повторяя исходную деталь, включая резьбы или тонкий рельеф. Не требует сложного подготовительного этапа (очистки от пятен ржавчины, обезжиривания и т.п.). Подобная антикоррозийная обработка металлоконструкций и трубопроводов в 2-3 раза долговечнее, чем гальваническая и может длительно оберегать сталь даже при эксплуатации ее в условиях воздействия морской воды. Из недостатков метода можно отметить его небольшую производительность и необходимость наличия специального оборудования (роторных печей).

Алитирование

Еще один способ металлизации конструкций, повышающий сопротивляемость поверхности материала к процессам коррозии. В качестве активного вещества используют порошкообразные смеси на основе ферроалюминия. Если предыдущий метод предполагает покрытие в виде цинка, то в данном случае формируется алюминиевое напыление. На поверхность объекта наносится покрытие металлизированного порошка, после чего выполняется изоляционная обмазка. Далее элемент готовится к диффузионному отжигу и обрабатывается специальной краской на той же основе алюминия. Продолжаются антикоррозионные работы по защите металлоконструкций погружением конструкции в алюминиевый расплав с выдержкой, параметры которой варьируются в зависимости от требований к конечному результату. Как показывает практика, алитирование наделяет металлические поверхности наиболее высокими характеристиками износостойкости.

Фаолитирование

Данная технология представляет собой нечто среднее между основательной обработкой металлизированными смесями и поверхностным нанесением лакокрасочного слоя. Защитный барьер в этом случае формируется посредством смеси на основе кислотоупорной термореактивной пластмассы. В итоге получается антикоррозийное и теплозащитное покрытие, которое также противодействует воздействию химически агрессивных солей. К достоинствам, которыми обладает данная антикоррозионная защита металлоконструкций, относят возможность применения в условиях высоких температур. Однако, для создания качественного покрытия перед непосредственной обработкой следует предварительно наносить бакелитовую лаковую основу.

Читать еще:  Как согнуть стальную полосу на ребро и сделать кольцо

Электрохимическая защита металла от коррозии

Антикоррозийная обработка металлоконструкций может быть дополнена электрохимической защитой, при которой на ограждаемую деталь устанавливается специальный протекторный анод из металла с более электроотрицательными свойствами. При этом скорость окислительного процесса в защищаемом партнере падает практически до нуля вплоть до полного разрушения анода, который в данном дуэте называют «жертвенным». Подобным образом экранируют свайные фундаменты, металл которых находится в грунте (особенно засоленном), нефтегазопромысловые сооружения и хранилища, а также днища судов, на которые постоянно воздействует морская вода.

Аноды могут быть изготовлены из платинированного титана, железнокремниевых сплавов, графитопластов. В настоящее время разрабатываются методы электрохимической защиты кузовов автомобилей, при этом токопроводящие аноды выполняются из электропроводящих полимеров в декоративном исполнении и наклеиваются на кузов в потенциальных коррозионноопасных точках.

Новые методы защиты

Несомненно, нанесение лакокрасочных материалов наиболее доступный метод сбережения ферросодержащих конструктивных элементов и деталей. Однако этот защитный слой требует обновления каждые 5-7 лет, что довольно трудоемко. Гальваническая и электрохимическая подготовка металла, позволяющая забыть о ржавчине лет на 50, — дело достаточно затратное. Однако в настоящее время уже существует недорогой инновационный метод защиты металлов от окисления и ржавления.

«Жидкая резина» — двухкомпонентный эластомер, при помощи которого выполняется надежная и долговечная антикоррозийная защита металлоконструкций. Эта сплошная, бесшовная мембранная прослойка наносится на металл при помощи распылительного пистолета, без всякой предварительной подготовки поверхности. После нанесения битумная эмульсия застывает мгновенно, не образуя потеков и неровностей, даже если основа была гладкой, скользкой и влажной. Производитель гарантирует, что данное покрытие в течение первых 20 лет не только не теряет своих свойств, но даже становится со временем прочнее. Таким образом могут быть обработаны металлические трубы, строительные конструкции любой конфигурации, поверхность цистерн и даже кровля. Металлы экранируемые при помощи такого резинового слоя абсолютно индифферентны к воздействию повышенной влажности и критическим температурам.

ЗАЩИТА ОТ КОРРОЗИИ МЕТАЛЛИЧЕСКИХ конструкций

Наиболее распространенными видами коррозионных повреждений в металлических конструкциях являются: равномерное разъедание металла; местные коррозионные поражения в виде каверн; щелевая и контактная коррозии; коррозия в местах концентрации напряжений. Оптимальными способами защиты металлических конструкций являются покрытия: металлизационные, металлизационные с последующей их окраской и полимерные лакокрасочные – эпоксидные, полиуретановые, поливинил-хлоридные, хлоркаучуковые и др.

Перед нанесением покрытий поверхность металла очищают механическим, термическим или химическим способами. К механическим способам относятся: очистка ручным или механизированным инструментом, обдувка абразивами – пескоструйная и дробеструйная. Термический способ заключается в обработке металлической поверхности пламенем ацетилено-кислородной или керосиновой горелки. Группу химических способов очистки составляют обработки поверхности: растворами кислот – для удаления окалины и ржавчины; растворами щелочей, органическими растворителями – для удаления старых лакокрасочных покрытий; преобразователями ржавчины – для обработки поверхностей с тонким слоем продуктов коррозии; органическими растворителями – для обезжиривания поверхности металла перед окраской.

В качестве основных материалов для нанесения металлизационных покрытий на металлические пролетные строения мостов применяют цинк и алюминий. Металлизационные покрытия из цинка обеспечивают надежную защиту от коррозии в атмосфере, не загрязненной промышленными газами. В условиях с наличием газов, содержащих сернистые соединения, хлор и углекислый газ, цинковые покрытия неустойчивы и корродируют со скоростью 8-12 мкм/год. Покрытия из алюминия особенно хорошо защищают сталь в атмосфере с содержанием промышленных газов. Скорость коррозии этих покрытий не превышает 3-7 мкм/год. Для более эффективной защиты применяют цинк-алюминиевые покрытия, которые в условиях атмосферной коррозии отличаются более высокой стойкостью, чем цинковые или алюминиевые. Их наносят расплавлением проволоки из сплава этих металлов, либо одновременным распылением цинка и алюминия.

Металлизацию осуществляют сразу же после подготовки поверхности под окраску. Допускаемый разрыв во времени между подготовкой поверхности и металлизацией зависит от состава, воздуха, его влажности и температуры и не должен превышать на открытом воздухе 3 часов в сухую погоду и 30 мин – в сырую.

Большая пористость металлизационных покрытий ограничивает область их применения. Для устранения этого недостатка применяют комбинированные металлизационно-лакокрасочные покрытия, представляющие собой сочетание двух раздельно наносимых слоев: металлизационного, наносимого газоплазменным напылением и лакокрасочного, наносимого по металлизационному слою кистью, распылением или другим способом. Пористость и шероховатость металлизационного слоя делают его эффективной грунтовкой для лакокрасочного материала. Первый слой лакокрасочного покрытия, являющийся пропиточным, должен обладать высокой смачивающей способностью, хорошей адгезией к напыляемому слою и быть достаточно жидким, чтобы заполнить поры металлизационного покрытия. Лакокрасочные материалы, наносимые в качестве последующих слоев, должны иметь обычную вязкость.

Лакокрасочные материалы и систему покрытий выбирают в зависимости от условий эксплуатации конструкций в различных климатических районах и степени загрязненности атмосферы коррозионно-активными агентами. Выбранный материал и тип покрытия должны отвечать следующим требованиям: 1) надежно защищать металл от атмосферных воздействий в процессе эксплуатации и обеспечивать срок службы покрытия не менее 8-10 лет; 2) создавать плотную эластичную пленку, прочно сцепляющуюся с металлом, непроницаемую для воды и газов и не растрескивающуюся при воздействии переменных напряжений; 3) иметь толщину не менее 100-120 мкм при одном-двух слоях грунтовки и двух-трех слоях эмали.

Покрытие обычно состоит из грунтовки и покрывных слоев. Грунтовкой называют первый слой лакокрасочного покрытия, наносимый на очищенную поверхность металла с целью создания надежного противокоррозионного слоя, обеспечивающего прочность сцепления с окрашиваемой поверхностью и с последующими слоями лакокрасочного покрытия.

Покрывные слои лакокрасочного покрытия для обеспечения надежной защиты от коррозии мостов должны обладать хорошей адгезией, высокой механической прочностью и атмосферостойкостью, обеспечивать стойкость и непроницаемость всей системы покрытия для окружающей среды в эксплуатационных условиях. Лакокрасочные материалы следует накладывать на поверхность несколькими тонкими слоями. Покрытие только одним слоем не может служить надежной защитой от коррозии, поскольку имеет большое количество пор. Последующие слои покрытия перекрывают эти поры и пленка становится более сплошной. Уменьшение количества слоев за счет увеличения их толщины недопустимо, так как это снижает качество покрытия, вызывает его растрескивание и образование подтеков.

Для лакокрасочных покрытий по металлу рекомендуются:

эпоксидная эмаль – биметаллическая смесь порошков цинка и алюминиевой пудры в растворе эпоксидной смолы. Наносится по грунтовке распылением в два слоя, жизнеспособность эмали не менее 7 часов. Покрытие повышенной атмосферостойкости, рекомендуется для защиты от коррозии металлических конструкций в условиях промышленной и морской атмосферы;

перхлорвиниловая эмаль – раствор поливинилхлоридной смолы в смеси летучих органических растворителей с добавлением пластификатора и алюминиевой пудры. Покрытие повышенной атмосферостойкости, предназначается для окраски металлоконструкций в условиях повышенной влажности, морской атмосферы и холодного климата;

полиуретановая эмаль – суспензия пигментов в растворе полиэфира с добавлением отвердителя. Жизнеспособность готовой к употреблению эмали не менее 8 часов. Покрытие атмосферостойко с высокой адгезией, твердостью, морозостойкостью и стойкостью к истиранию. Предназначается для защиты от атмосферных воздействий в условиях повышенной влажности, морской атмосферы и холодного климата.

Как защитить металл от коррозии?

На сегодняшний день проблемы антикоррозионной защиты строительных и других видов конструкций, различной продукции и материалов являются актуальными как в России, так и во многих странах мира. В промышленно развитых странах коррозия металлов наносит существенный ущерб экономике каждого государства, поэтому данные вопросы играют немаловажную роль как в быту, так и в государственных масштабах.

В нашей стране накоплен некоторый опыт проведения исследований с целью определения скорости коррозионных процессов и методов защиты. Усилена работы в сфере разработки специализированных материалов и технологий, которые обеспечивают высокую степень защиты от коррозии.

Защита от коррозии — актуальная проблема, и основывается на необходимости защиты окружающей среды, сохранения природных ресурсов, а также рационального использования, хранения металлических конструкций в условиях производства.

В настоящее время существует большое количество приемов и средств для борьбы с коррозией. Одними из действенных методов существенно уменьшить коррозионные процессы или полностью их ликвидировать являются использование коррозионностойких материалов, нанесение защитных покрытий, введение в потенциально подверженную коррозии среду ингибиторов, таких как нитриты, хроматы, арсениты.

Однако следует помнить, что при каждом конкретном случае необходимо решить, каким из средств или в каком их сочетании возможно добиться наиболее эффективного и экономичного результата.

Методы борьбы с коррозионными процессами

При выборе оптимального способа защиты от коррозии металлических конструкций и продукции из различных видов металла необходимо учитывать ряд факторов:

  • климатические условия того или иного региона,
  • особенности эксплуатации металлической конструкции,
  • характеристики самой конструкции и многое другое.

Рассмотрим основные методы защиты от коррозии, которые находят широкое применение в современной промышленности, на производстве и в быту.

Лакокрасочные покрытия

Среди таких методов можно выделить наиболее распространенное направление — это нанесение защитных эмалей, красок, лаков и других материалов. Данная методика является доступной для широкого круга людей.

При этом следует учитывать и тот факт, что лакокрасочные покрытия могут обеспечить только преграду для образования коррозии, но не исключить ее появление. Именно поэтому здесь необходимо учитывать такие аспекты как тщательная подготовка поверхности к окрашиванию, равномерность наносимого покрытия, толщина слоя, прочность, отсутствие воздушных полостей и т.д.

1. Краска по ржавчине. Одним из наиболее популярных способов защиты является применение краски для металла по ржавчине. Как правило, такая краска выполняет три основные функции: она преобразовывает ржавчину, совмещает в себе антикоррозионный грунт и верхнюю эмаль. Эмаль отличается стойкостью к износам и атмосферным воздействиям. Краска может наносится как на чистую, так и на подверженную коррозии поверхность.

2. Жидкий пластик. Этот сравнительно новый, эффективный и простой способ защиты металлов от коррозии находит применение при покраске трубопроводов, решеток, автомобильных деталей, металлической мебели и других конструкций. Данное покрытие может наносится на неочищенную поверхность с различным уровнем коррозии. Одним из преимуществ такого метода является возможность влажной очистки при помощи любых синтетических средств.

Электрохимическая защита

Целью других способов защиты (которые также именуются активными) является преобразование структуры двойного электрического слоя. На защищаемую поверхность воздействует постоянное электрическое поле с определенным напряжением в зависимости от характеристик конкретного металла. Воздействие тока осуществляется от постороннего источника или при помощи присоединения протекторов к защищаемой конструкции. Электродный потенциал металла повышается, в результате чего образуется препятствие для появления коррозии.

Конструкционные методы

Существует также конструкционный метод защиты, в рамках которого применяются такие материалы как цветные металлы, нержавеющие стали и кортеновские стали. Вопросы обеспечения защиты от коррозии разрабатываются при этом уже на этапе проектирования. Металлическая конструкция должна быть по возможности максимально изолирована от воздействия коррозионной среды. Для реализации этой цели используются герметики, клеи, специальные прокладки из резины и проч.

Кроме того, при этом необходимо обеспечить оптимальные условия дальнейшей эксплуатации металлических конструкций и деталей. Сюда можно отнести исключение неблагоприятных атмосферных или механических воздействий на конструкцию, устранение щелей и повреждений, устранение областей, в которых возможно скапливание влаги, и проч.

Предложения компании «БораПак» в Самаре

Компания «Бора Пак» предлагает на современном рынке антикоррозионные упаковочные материалы VCI, которые отличаются превосходным качеством, удобством в эксплуатации и безопасностью для человека и окружающей среды. Защита от коррозии достигается путем использования упаковочной бумаги, пленок и .

Преимуществом таких материалов является и тот факт, что за одну рабочую операцию достигается не только защита металла от коррозии, но и отличная упаковка продукции любых габаритов.

Часто задаваемые вопросы

Вопрос 1. Что такое коррозия металлов, и как она образуется?

Коррозия металлов — это их самопроизвольное разрушение под действием различных веществ окружающей среды. Разрушение происходит в результате химического или контакта с окружающей средой, в следствие чего термодинамически неустойчивые материалы начинают разрушаться. Скорость коррозионных процессов зависит от температуры и уровня влажности.

Коррозионные процессы могут протекать в различных средах и касаться различных материалов, в том числе неметаллических.

Вопрос 2. В чем заключается действие ингибиторов коррозии?

Ингибиторы коррозии представляют собой специальные вещества, основной функцией которых является снижение коррозионной активности и, как следствие, обеспечение надежной защиты металлов от коррозии. Небольшое количество веществ вводится в потенциально подверженную коррозии среду и образуют особую пленку на поверхности металла, которая замедляет электродные процессы и меняет электрохимических характеристики металла.

Подобная технология применялась еще несколько столетий назад. Многие кузнецы и оружейники добавляли в кислоты муку и отруби для лучшего снятия окалины со стальных образцов.

В настоящее время существуют различные типы ингибиторов коррозии, такие как ингибиторы для нейтральных сред, ингибиторы кислотной коррозии и другие.

Вопрос 3. Какие материалы используются для предотвращения и уменьшения коррозии?

С целью предотвращения распространения коррозионных процессов используются различные материалы, среди которых можно выделить различные лакокрасочные покрытия, эмали, чипы, защитные пленки .

Вопрос 4. В чем особенности лакокрасочных материалов?

Наиболее широкое применение в современной промышленности, строительстве и быту получили лакокрасочные покрытия, которые обеспечивают защиту от коррозии. Они отличаются удобством нанесения, экономичностью и хорошими механическими и химическими свойствами.

В зависимости от условий эксплуатации металлических конструкций и заготовок используемые лакокрасочные изделия подразделяются на несколько групп: покрытия, стойкие к воздействию открытого воздуха, кислотостойкие, водостойкие, химически стойкие, термостойкие, бензостойкие и др.

Вопрос 5. Как правильно наносить лакокрасочное покрытие?

Для того, чтобы получить качественную защитную пленку и обеспечить хорошее сцепление с защищаемой поверхностью, покрытие в большинстве случаев наносится в три этапа. Первым слоем идет грунт, затем — эмаль и, в заключении — лак. Число таких слоев может варьироваться в зависимости от особенностей эксплуатации поверхности.

После нанесения покрытия его необходимо хорошо просушить. Как правило, сушка открытых поверхностей длится около пяти суток, закрытых — от 10 до 15 суток.

Для того, чтобы добиться более прочного покрытия, его полируют стеклотканью.

Борьба с коррозией: методы защиты металлических конструкций

Металл — это материал, который не имеет аналогов в мире по своим качествам, прочности, долговечности, и, что немаловажно, стоимости. Однако, у него есть один недостаток, который может свести на нет все выгоды от его использования. Беззащитный металл, подверженный воздействию природных осадков, химических реагентов, воды и других катаклизмов часто подвергается коррозии, или как говорят в простонародье, “ржавчине”. Все вы видели старые автомобили, за которыми не ухаживает хозяин — они прогнивают насквозь и иногда страшно подумать, что на этом транспорте еще передвигаются люди. Коррозия проедает металл насквозь, и, если не озаботиться заранее о том, чтобы защитить свое имущество от коррозии, то вы рискуете с ним расстаться намного раньше срока. В статье я расскажу, как защитить металл от ржавчины и продлить срок службы металлического изделия.

Причины возникновения коррозии

Начну статью с пояснения причин возникновения коррозии. Коррозия металла – серьезная проблема, но знание причин поможет не допустить распространения заразы.

  1. Самой распространенной причиной возникновения коррозии металла является электрохимическая – ситуация, когда металл соприкасается с влажной средой. Электрохимическая коррозия зачастую вызвана неправильным хранением или неверной эксплуатацией.
  2. Вторая причина возникновения коррозии – химическая. Химическая коррозия возникает как правило при соприкосновении с сухими газовыми соединениям или солями. Например, когда дорогу посыпают солью зимой, в надежде защитить автомобили от скольжения. В таком случае детали авто покрываются солями натрия и калия, которые в итоге разъедают металл. Она неприятна тем, что ей подвержены абсолютно все металлы.
  3. Ну и последняя причина разрушения металлов – это биологическая. То есть металлы разрушаются под воздействием микроорганизмов, радиоактивных излучений. По-другому биологическая коррозия еще называется биокоррозией.

Как же избежать неприятных последствий коррозии металла? Существует множество способов борьбы с коррозией, но самыми эффективными считаются превентивные меры – когда вы заблаговременно покрываете металл специальными антикоррозийными растворами.

Органические покрытия против коррозии

Наиболее удачно решение по борьбе с коррозией – органические смеси для предотвращения ржавчины. Преимуществами органических покрытий можно назвать простоту нанесения, разнообразие дизайнов, легкость восстановления испорченного покрытия и приемлемая стоимость. Однако, недостатком органических растворов является их неустойчивость к нагреванию. Среди органических антикоррозийных растворов выделяют:

  1. лаки;
  2. краски;
  3. эмали;
  4. пластификаторы;
  5. пленкообразователи.

Стоит отметить, что большую роль в успешной антикоррозийной защите играет качество смеси (то есть лака, краски или эмали), которой вы покрываете металл. От ее состава напрямую зависит, сколько прослужит металл. Правильное соотношение краски, смягчителя, катализаторов и других компонентов напрямую влияет на долговечность защиты.

Другими важными факторами являются:

  • качество подготовки поверхности;
  • метод нанесения;
  • толщина покрытия.

Зачастую эффективнее и выгоднее воспользоваться услугами профессионалов, если необходимо защитить дорогостоящее металлическое оборудование. На производстве специалисты обладают возможностями, гарантирующими долгосрочную и качественную защиту металла от ржавчины:

  • химическая обработка металлов;
  • погружение в расплав;
  • напыление;
  • электролитическое осаждение;
  • гуммирование;
  • покрытие смазками и пастами;
  • покрытие смолами и пластмассами.

Неорганические покрытия против коррозии

К неорганическим антикоррозийным покрытиям относятся следующие методы:

  • Оксидирование металла. Этот процесс применяется в современном производстве для защиты металлов от атмосферных факторов. В процессе работы детали погружают в щелочные смеси.
  • Анодирование металла. Применяется в основном для защиты алюминия и алюминий содержащих сплавов путем покрытия их антикоррозийной пленкой.
  • Фосфатирование металла. Применяется для черных и цветных металлов, путем погружения в фосфорно-соляной раствор.

Применение неорганических методов борьбы с ржавчиной, в отличие от покрытия эмалями и лаками, используется в узких областях промышленности.

Подводя итоги, можно сделать определенный вывод. Для бытового использования больше подходит использование органических антикоррозийных покрытий, так как применение неорганических покрытий по большей части невозможно в домашних условиях. Кроме того, хорошее покрытие не может быть дешевым и при принятии решения самостоятельность заниматься мерами по предотвращению коррозии и гниения, стоит понимать, что в таком случае оно не будет таким долговечным, как если вы сделаете это в специально предназначенной мастерской.

Методы защиты от коррозии металлов

Методы защиты от коррозии металлов актуальны. Потому что металл является одним из самых востребованных материалов применяемых в автомобилестроении. И несмотря на то, что в некоторых областях его успешно заменяют, основная проблема, связанная с использованием металлических изделий это коррозия. Виды и методы защиты коррозии металла различаются друг от друга.

Читать еще:  Не хватает маленького штриха; Как выбрать краску для банной железной печи

Коррозия, разрушение металла в результате электрохимического воздействия. Это растворение во влагосодержащей или воздушной среде электролита или химического воздействия, в результате которого происходит соединение металлов с химическими элементами, находящимися в воздушной или водной среде. Ржавление это коррозия железа и его сплавов, коррозия других металлов сводится к окислению, образованию оксидов. Химическая коррозия возникает в результате воздействия сухих газов и жидкостей, вступающих в химическую реакцию с металлом.

Виды коррозии металлов:

— процессы это химические и электрохимические

-по характеру разрушения равномерная, и не равномерная

— по виду коррозионной среды газовая, жидкостная, атмосферная, почвенная

Химическая коррозия

Основана на реакции между металлом и агрессивной средой. Результатом этой коррозии является образование на металле окалины или в случае с медью образуется зеленый налет. Этот тип коррозии распространяется равномерно по всей поверхности металла. Химическая коррозия не так сильно воздействует на металл, как электрохимическая.

Электрохимическая коррозия

Это процесс, при котором металлы и сплавы утрачивают часть своих электронов, они переходят в электролитический раствор, образующийся на поверхности металла в виде ионов, а электроны, замещающие атомы металла, переходят в металл с отрицательным зарядом, образуется гальваническая реакция в результате чего происходит разрушение металла. Металлы применяемые в строительстве подвергаются, как правило электрохимической коррозии, из за присутствия влаги на поверхности металла, вызвано это постоянным изменением температуры, в результате чего образуется конденсат.

Атмосферная коррозия

Атмосферная коррозия металла, аналогична протеканию электрохимической коррозии, в связи с наличием влажности воздуха. При повышении влажности свыше 70 процентов происходит интенсивная потеря стали. Также на процесс коррозии влияет наличие агрессивных элементов в окружающей среде таких как углекислый газ, диоксид серы,

По охвату поверхности коррозия может быть равномерная, при этом она не представляет большой опасности, если не достигает критических размеров повреждения металла. Наиболее опасна неравномерная коррозия металла Потому что могут образовывать отдельные очаги повреждения металла, что приведет к значительному ослаблению элементов металлической конструкции.

Избежать процессы коррозии, полностью невозможно, но снизить воздействие этих процессов возможно.

По видам различают несколько мер воздействия на коррозию.

Методы защиты от коррозии металлов

Методы защиты от коррозии металлов разделяются на технологические, активные и пассивные.

Активные методы

Методы защиты от коррозии металлов предполагают постоянное воздействие на металл, к ним относятся способы изменения коррозионной среды. Это снижение кислотности почвы, снижение содержания хлора в воде. Также к активному методу относится протекторная защита, она заключается в связывании металла с контактным материалом, который больше подвержен окислению, он называется протектором и по сути является громоотводом. Принимает на себя электролизные процессы, влияющие на ржавление металла.

Технологические приёмы

Это когда при производстве металла происходит добавление в стальной сплав хрома , титана, марганца, никеля, которые помогают получить сталь с антикоррозийными свойствами. Например при добавлении хрома на поверхности металла образуется оксидная пленка большой плотности

Пассивные методы

Происходит изолирование металла при помощи различных покрытий, которые препятствуют образованию коррозии. Применяют катодное и анодное покрытие.

Анодное покрытие

При применении анодного покрытия металл покрывают другим металлом с большим отрицательным потенциалом. Это как правило цинк, либо кадмий. В настоящее время распространена защита металла посредством нанесения слоя цинка.

Катодное покрытие

производится металлами с более положительным потенциалом. При катодном покрытии металла соблюдается механическая защита металла. В качестве катодного покрытия применяют олово медь. никель. Для покрытия металла применяют горячий метод, напыление, металлизацию, гальванизацию, При горячем методе сталь помещают в расплавленный металл, который покрывается тонким слоем. Горячий способ применяют при лужении, покрытие металла оловом, и цинкование.

Оксидирование

Также применят химические способы покрытия металла, это оксидирование, образуется оксидная пленка, которая защищает металл от коррозии, ещё этот процесс называют воронение стали. Также можно обработать сталь анодированием, это электролиз алюминия. Так же посредством фосфатирования и азотирования.

Применение эмалей и грунтов

Наиболее доступным методом защиты металла является применение специальных эмалей и грунтов.

Они осуществляют барьерную защиту от воздействия вредных факторов окружающей среды, она заключается в механической защите поверхности. Нарушение покрытия происходит при образовании микротрещин, в результате происходит возникновение подпленочной коррозии, для предотвращения проводят пассивацию поверхности металла, при помощи специальных лакокрасочных покрытий.

В состав, входят специальные химические агенты. К таким лакокрасочным покрытиям относятся грунты и эмали, имеющие в своём составе фосфорную кислоту, и другие ингибирующие элементы, замедляющие процесс коррозии. Более эффективными лакокрасочными материалами являются те которые осуществляют протекторную защиту. Это достигается путем добавления, в лакокрасочные покрытия металлов создающих донорские электронные пары, к ним относятся цинк, магний и алюминий.

Для защиты металлических конструкций, которые эксплуатируются в условиях промышленной атмосферы, разрабатываются специальные эмали, образующие, влагозащищающие уретановые покрытия. Для защиты от постоянного контакта с водной средой выпускаются эмали, способные наносится на цинк, медь и другие поверхности.

В настоящее время на рынке представлен широкий спектр антикоррозионных эмалей. Одним из новшеств является покрытие металла фторопластом, он обладает химической инертностью практически ко всем агрессивным средам. Эмали на его основе наносятся кистью, воздушным и безвоздушным распылением, на очищенную поверхность металла. При применении, того или иного материала необходимо учитывать факторы такие как вид металла условия его эксплуатации, производственные возможности и целесообразность использования.

Средства коррозионной обработки применяются в зависимости от марки металла, воздействующей среды, действующих на него нагрузок. Для каждой сферы эксплуатации конструкции предусмотрены нормативы. Оптимальным методом является, обработка металла в условиях завода. То есть нанесение, транспортировочного грунта.

Прежде чем он попадет на строительную площадку. Нанесение антикоррозионных материалов обеспечивают всего на всего 20 процентов защиты металла, основным фактором влияющим на качественную защиту металла является его предварительная обработка, от грязи . ржавчины, а также любых других веществ которые будут оказывать препятствие для окрашивания поверхности.

Обработка металла от коррозии

Механическая очистка поверхности при помощи щеток, скребков а также с применение электроинструмента с различными насадками

Пескоструйная очистка наиболее эффективный метод для очищения поверхности, но имеющий ряд недостатков, таких как низкая производительность, создание запыленности, что нарушает условия труда на строительной площадке.

Гидроструйная очистка повышает производительность, а применение абразивных материалов улучшает качество очистки.

Химическая очистка. Подразумевает применение специальных материалов которые разделяются на смываемые и несмываемые.

Смываемые методы химической очистки

К смываемым относятся 5% раствор соляной или серной кислоты, но при использовании этих материалов необходимо применять вещество, замедляющее химический процесс, так называемый ингибитор. Если не замедлить химическую реакцию помимо ржавчины уничтожится и сам металл. Можно использовать 15-30 % раствор ортофосфорной кислоты, в результате ее применения ржавчина превращается в твердую структуру, которая и является защитой от последующей коррозии. Хорошо помогает смесь 50 г молочной кислоты на 100 мл вазелинового масла. Кислота преобразует ржавчину в соль, а вазелиновое масло её растворяет.

Несмываемые методы химической очистки

Относят применение грунт преобразователей, ржавчина преобразуется в грунт, и не требует дальнейшего смывания. Если не удаётся полностью избавиться от ржавчины необходимо для предварительного окрашивания металла применить грунтовку со специальными антикоррозионными свойствами. Окончательная обработка поверхности производится с использование лаков, красок, эмалей со специальными свойствами.

Этапы антикоррозионных работ

  • Подготовка необходимых материалов.
  • Нанесение грунтовки обеспечивающей лучшее сцепление эмалей.
  • Нанесение эмалей с защитным покрытием
  • Сушка покрытия или его термообработка.

Наиболее эффективным способ нанесения лакокрасочных покрытии считается метод безвоздушного напыления. Так как он наиболее качественно позволяет прокрашивать. Имеющиеся неровности металла.

Менее эффективный способ это прокрашивание кистью. Нежелательно наносить лакокрасочные покрытия валиком.

Контроль качества выполненных работ

Применяемые методы защиты от коррозии металлов подвергаются контролю качества. Выполняется с целью проверки ранее выполненного производственного контроля. Предупреждение дефектов. Разработка мер по устранению обнаруженных дефектов. Контроль качества антикоррозионных работ начинается с проверки документации. Должны быть предоставлена документация на объект антикоррозионной защиты, на применяемые материалы, сертификаты о качестве продукции. По окончании проведения контроля качества работ составляется акт содержащий сведения о месте проведения работ, о состояния проведенных работ, о примененных материалах их марки и расходе. Сведения о организации исполнителе, и подписи лиц проводивших работы. Комиссия, проводящая контроль качества работ проверяет следующие параметры:

— вид антикоррозионного покрытия, не должно быть наличие мест не подвергнутых обработке.

— проверяется толщина слоя покрытия путем замера в различных местах, где предположительно возможна не качественная обработка.

— контролируется адгезия лакокрасочного материала с металлической поверхностью.

Нарушения выявляемые, при контроле качества работ.

После выполнения работ образуется ржавление на поверхности обработанного металла, это связано с тем что не был соблюден, температурный режим или не удалена полностью влага. Так же возможна недостаточная очистка металла от окислов, это приводит к возникновению последующей коррозии. Не достаточно убранные различные загрязнители масло, мыло, соли все это приведет к нарушению лакокрасочного покрытия дальнейшему ржавлению металла. Присутствие пыли на обрабатываемой поверхности снижает адгезию. Что приводит к отслоению лакокрасочного покрытия. Не выдерживание времени, которое допустимо на нахождение металла без обработки приводит к его ржавлению, также должна соблюдаться межслойная выдержка, растворитель не успевает раствориться и происходит его просачивание через другие слои. Что приводит к нарушению покрытия в виде пузырения. Все эти нарушения, выявленные при проведении контроля качества, подлежат немедленному устранению.

Защита металла от коррозии

Металлы используются человеком с доисторических времен, изделия из них широко распространены в нашей жизни. Самым распространенным металлом является железо и его сплавы. К сожалению, они подвержены коррозии, или ржавлению — разрушению в результате окисления. Своевременная защита от коррозии позволяет продлить срок службы металлических изделий и конструкций.

Виды коррозии

Ученые давно борются с коррозией и выделили несколько основных ее типов:

  • Атмосферная. Происходит окисление вследствие контакта с кислородом воздуха и содержащимися в нем водяными парами. Присутствие в воздухе загрязнений в виде химически активных веществ ускоряет ржавление.
  • Жидкостная. Проходит в водной среде, соли, содержащиеся в воде, особенно морской, многократно ускоряют окисление.
  • Почвенная. Этому виду подвержены изделия и конструкции, находящиеся в грунте. Химический состав грунта, грунтовые воды и токи утечки создают особую среду для развития химических процессов.

Исходя из того, в какой среде будет эксплуатироваться изделие, подбираются подходящие методы защиты от коррозии.

Характерные типы поражения ржавчиной

Различают следующие характерные виды поражения коррозией:

  • Поверхность покрыта сплошным ржавым слоем или отдельными кусками.
  • На детали возникли небольшие участки ржавчины, проникающей в толщину детали.
  • В виде глубоких трещин.
  • В сплаве окисляется один из компонентов.
  • Глубинное проникновение по всему объему.
  • Комбинированные.

Виды коррозионных разрушений

По причине возникновения разделяют также:

  • Химическую. Химические реакции с активными веществами.
  • Электрохимическую. При контакте с электролитическими растворами возникает электрический ток, под действием которого замещаются электроны металлов, и происходит разрушение кристаллической структуры с образованием ржавчины.

Коррозия металла и способы защиты от нее

Ученые и инженеры разработали множество способов защиты металлических конструкций от коррозии.

Защита от коррозии индустриальных и строительных конструкций, различных видов транспорта осуществляется промышленными способами.

Зачастую они достаточно сложные и дорогостоящие. Для защиты металлических изделий в условиях домовладений применяют бытовые методы, более доступные по цене и не связанные со сложными технологиями.

Промышленные

Промышленные методы защиты металлических изделий подразделяются на ряд направлений:

  • Пассивация. При выплавке стали в ее состав добавляют легирующие присадки, такие, как Cr, Mo, Nb, Ni. Они способствуют образованию на поверхности детали прочной и химически стойкой пленки окислов, препятствующей доступу агрессивных газов и жидкостей к железу.
  • Защитное металлическое покрытие. На поверхность изделия наносят тонкий слой другого металлического элемента — Zn , Al, Co и др. Этот слой защищает железо о т ржавления.
  • Электрозащита. Рядом с защищаемой деталью размещают пластины из другого металлического элемента или сплава, так называемые аноды. Токи в электролите текут через эти пластины, а не через деталь. Так защищают подводные детали морского транспорта и буровых платформ.
  • Ингибиторы. Специальные вещества, замедляющие или вовсе останавливающие химические реакции.
  • Защитное лакокрасочное покрытие.
  • Термообработка.

Порошковая покраска для защиты от коррозии

Способы защиты от коррозии, используемые в индустрии, весьма разнообразны. Выбор конкретного метода борьбы с коррозией зависит от условий эксплуатации защищаемой конструкции.

Бытовые

Бытовые методы защиты металлов от коррозии сводятся, как правило, к нанесению защитных лакокрасочных покрытий. Состав их может быть самый разнообразный, включая:

  • силиконовые смолы;
  • полимерные материалы;
  • ингибиторы;
  • мелкие металлические опилки.

Отдельной группой стоят преобразователи ржавчины — составы, которые наносят на уже затронутые коррозией конструкции. Они восстанавливают железо из окислов и предотвращают повторную коррозию. Преобразователи делятся на следующие виды:

  • Грунты. Наносятся на зачищенную поверхность, обладают высокой адгезией. Содержат в своем составе ингибирующие вещества, позволяют экономить финишную краску.
  • Стабилизаторы. Преобразуют оксиды железа в другие вещества.
  • Преобразователи оксидов железа в соли.
  • Масла и смолы, обволакивающие частички ржавчины и нейтрализующие ее.

При выборе грунта и краски лучше брать их от одного производителя. Так вы избежите проблем совместимости лакокрасочных материалов.

Защитные краски по металлу

По температурному режиму эксплуатации краски делятся на две большие группы:

  • обычные, используемые при температурах до 80 °С;
  • термостойкие.

По типу связующей основы краски бывают:

  • алкидные;
  • акриловые;
  • эпоксидные.

Лакокрасочные покрытия по металлу имеют следующие достоинства:

  • качественная защита поверхности от коррозии;
  • легкость нанесения;
  • быстрота высыхания;
  • много разных цветов;
  • долгий срок службы.

Большой популярностью пользуются молотковые эмали, не только защищающие метал, но и создающие эстетичный внешний вид. Для обработки металла распространена также краска-серебрянка. В ее состав добавлена алюминиевая пудра. Защита металла происходит за счет образования тонкой пленки окиси алюминия.

Эпоксидные смеси из двух компонентов отличаются исключительной прочностью покрытия и применяются для узлов, подверженных высоким нагрузкам.

Защита металла в бытовых условиях

Чтобы надежно защитить металлические изделия от коррозии, следует выполнить следующую последовательность действий:

  • очистить поверхность от ржавчины и старой краски с помощью проволочной щетки или абразивной бумаги;
  • обезжирить поверхность;
  • сразу же нанести слой грунта;
  • после высыхания грунта нанести два слоя основной краски.

При работе следует использовать средства индивидуальной защиты:

  • перчатки;
  • респиратор;
  • очки или прозрачный щиток.

Способы защиты металлов от коррозии постоянно совершенствуются учеными и инженерами.

Методы противостояния коррозионным процессам

Основные методы, применяемые для противодействия коррозии, приведены ниже:

  • повышение способности материалов противостоять окислению за счет изменения его химического состава;
  • изоляция защищаемой поверхности от контакта с активными средами;
  • снижение активности окружающей изделие среды;
  • электрохимические.

Первые две группы способов применяются во время изготовления конструкции, а вторые – во время эксплуатации.

Методы повышения сопротивляемости

В состав сплава добавляют элементы, повышающие его коррозионную устойчивость. Такие стали называют нержавеющими. Они не требуют дополнительных покрытий и отличаются эстетичным внешним видом. В качестве добавок применяют никель, хром, медь, марганец, кобальт в определенных пропорциях.

Нержавеющая сталь AISI 304

Стойкость материалов к ржавлению повышают также, удаляя их состава ускоряющие коррозию компоненты, как, например, кислород и серу — из стальных сплавов, а железо – из магниевых и алюминиевых.

Снижение агрессивности внешней среды и электрохимическая защита

С целью подавления процессов окисления во внешнюю среду добавляют особые составы — ингибиторы. Они замедляют химические реакции в десятки и сотни раз.

Электрохимические способы сводятся к изменению электрохимического потенциала материала путем пропускания электрического тока. В результате коррозионные процессы сильно замедляются или даже вовсе прекращаются.

Пленочная защита

Защитная пленка препятствует доступу молекул активных веществ к молекулам металла и таким образом предотвращают коррозионные явления.

Пленки образуются из лакокрасочных материалов, пластмассы и смолы. Лакокрасочные покрытия недороги и удобны в нанесении. Ими покрывают изделие в несколько слоев. Под краску наносят слой грунта, улучшающего сцепление с поверхностью и позволяющего экономить более дорогую краску. Служат такие покрытия от 5 до 10 лет. В качестве грунта иногда применяют смесь фосфатов марганца и железа.

Защитные покрытия создают также из тонких слоев других металлов: цинка, хрома, никеля. Их наносят гальваническим способом.

Покрытие металлом с более высоким электрохимическим потенциалом, чем у основного материала, называется анодным. Оно продолжает защищать основной материал, отвлекая активные окислители на себя, даже в случае частичного разрушения. Покрытия с более низким потенциалом называют катодными. В случае нарушения такого покрытия оно ускоряет коррозию за счет электрохимических процессов.

Металлическое покрытие также можно наносить также методом распыления в струе плазмы.

Применяется также и совместный прокат нагретых до температуры пластичности листов основного и защищающего металла. Под давлением происходит взаимная диффузия молекул элементов в кристаллические решетки друг друга и образование биметаллического материала. Этот метод называют плакированием.

Способы защиты металлоконструкций от коррозии

Антикоррозийную защиту металлоконструкций можно разделить на два разных класса решения проблемы возникающей коррозии :
1) Ингибиторы коррозии (общее название веществ, подавляющих или задерживающих течение физиологических и физико-химических процессов коррозии) нанесение которых создает защитный слой металлоконструкции от коррозии.
2) Протекторы — изолируемая от коррозии поверхность защищается другой более восприимчевой к агрессивной окружающей среде поверхностью, тем самым образуя дополнительный подвергаемый коррозии слой.

В данной статье рассмотрятся несколько вариантов ингибиторов коррозии и протекторов, а именно антикоррозийных покрытий от компании АКТЕРМ.

Проблемы вызываемые коррозией в металлоконструкциях

Ржавчина труб, ржавчина на трубах

Ржавчина в баках / резервуарах

Коррозия железа в фасаде

Вышедшие из строя средства от коррозии

Ниже будут рассмотрены самые популярные виды антикоррозийной защиты металла от коррозии — разрабатываемые компанией-производителем АКТЕРМ. Все средства проверены в качестве материалов защиты от коррозии.

Для уменьшения времени на выбор материала, рекомендуем проконсультироваться со специалистом компании АКТЕРМ, для принятия наиболее выгодного решения по выбору способа защиты металла от коррозии.

Популярные методы защиты металлоконструкций от коррозии

Подготовка поверхности металла перед подкраской антикоррозией

Срок службы и противокоррозионная эффективность покрытия зависят от подготовки поверхности

Подготовка поверхности перед обработкой грунт-эмалью 3 в 1

Перед нанесением покрытия при необходимости подложку отмыть от масляных и жировых загрязнений растворителями или водными моющими растворами; от грязи и водорастворимых веществ чистой пресной водой. Непрочно держащиеся слои старой краски или ржавчины необходимо зачистить или зашлифовать.

Читать еще:  Поделки из металла своими руками - подборка простых и сложных мастер-классов с фото примерами изделий

Подготовка поверхности стальных конструкций регламентная в соответствии с ИСО 8501-1 до степени Sa 2½. При согласовании с технической службой производителя в некоторых случаях возможна подготовка до степени St 2.

Подготовка поверхности перед холодным цинкованием
Очистить металл от пыли и грязи.

Подготовка поверхности перед обработкой быстро-сонхущей антикоррозией на воде
Очистить обрабатываемую поверхность от рыхлой ржавчины грязи, пыли, масел и старой отслоившейся краски.

Подготовка поверхности перед обработкой смолой и отверждением изоцианатом
Стальные конструкции: пескоструйная обработка до степени 2,5.
Новый металл: обезжиривание моющими составами, щелочное травление.
Оцинкованная сталь: отсутствие снижающих адгезию веществ (жиры, масла, пыль, грязь, продукты коррозии цинка (белая пыль) и т.п.)

Антикоррозийная краска как защита металлоконструкций

Антикоррозийная краска — жидкий материал, наносимый традиционными для красок способами на металл, защищающий его от коррозии, тоесть является ингибитором коррозии. В подававляющем большинстве случаев антикоррозийной краске придают желаемый цвет, добавляя цветовые пегменты. Компания АКТЕРМ рекомендует использовать грунт-эмаль 3 в 1 АКТЕРМ Plast в качестве антикоррозийной защиты металлоконструкций

АКТЕРМ Грунт-эмаль Plast

Однокомпонентное быстросохнущее декоративное покрытие, применяется в качестве антикоррозийной защиты металлоконструкций, мосты, вышки сотовой связи, корпуса судов, кузовов автотранспорта и подвижного состава, эксплуатирующихся в условиях воздействия внешних климатических факторов. Стойкость к атмосферным воздействиям до 10 лет.
Колеруется в RAL.
Универсальная антикоррозийная защита металла

Антикоррозийные краски могут иметь теплоотражающие (теплоизорищующие) свойства, помимо антикоррозийных — такими свойствами обладает материал АКТЕРМ Антикор

АКТЕРМ Антикор

Теплоотражающее покрытие, для защиты металлических поверхностей от коррозии, температура эксплуатации от -50ºС до +150ºС
Теплоизоляция + антикоррозийные свойства металлу

Антикоррозийная краска может так же иметь электро-химические свойства защиты, в этом случае применяется нанесение цинка (холодное цинкование) как покрытие металла — фактически используется цинковая краска, которая называется составом холодного цинкования.

АКТЕРМ Цинк

Состав холодного цинкования в основе которого находится 96% цинка, обладает электрохимической защитой металла, а также протекторным действием – сравним по защитным свойствам с горячим и гальваническим способами цинкования. Состав пригоден для наружных и внутри проветриваемых помещений.
Электро-химическая защита металла + антикоррозия металла

Так же применяются полеуретановые составы для придания антикоррозийному материалу повышенных свойств абразивоустойчивости и предотвращающие разрушение металла — АКТЕРМ Антикор ПУ — такой состав можно отнести к классу “протекторов металла от коррозии”.

АКТЕРМ Антикор ПУ

Двухкомпонентное покрытие, применяется в виде самостоятельного защитно-декоративного противокоррозионного протектора для наружных поверхностей, резервуаров , цистерн, вагонов, кузовов и узлов автотранспорта и подвижного состава, конструкций из стали, чугуна, алюминиевых и титановых сплавов, эксплуатируемых во всех типах атмосферы и нагрузки категорий С2-С4. Защита до 20 лет.Колеруется в RAL.
Абразивоустойчивость + предотвращение разрушения + антикоррозия

Электрохимичесткая защита металлоконструкций

В качестве протектора для электрохимической защиты металла применяется состав холодного цинкования.
Процесс глубокой электрохимической защиты металла от коррозии называется холодное цинкование металла.
Цинковые проекторы применяют для защиты изделий от разрушающей коррозии вызванной экстремальными
погодными условиями, наличием соленой морской воды в непосредственном контакте с металлической поверхностью.

АКТЕРМ Цинк

Состав холодного цинкования в основе которого находится 96% цинка, обладает электрохимической защитой металла, а также протекторным действием – сравним по защитным свойствам с горячим и гальваническим способами цинкования. Состав пригоден для наружных и внутри проветриваемых помещений.
Электро-химическая защита металла + антикоррозия металла

АКТЕРМ Антикор ПУ

Двухкомпонентное покрытие, применяется в виде самостоятельного защитно-декоративного противокоррозионного протектора для наружных поверхностей, резервуаров , цистерн, вагонов, кузовов и узлов автотранспорта и подвижного состава, конструкций из стали, чугуна, алюминиевых и титановых сплавов, эксплуатируемых во всех типах атмосферы и нагрузки категорий С2-С4. Защита до 20 лет. Колеруется в RAL.
Абразивоустойчивость + предотвращение разрушения + антикоррозия

Преобразователи ржавчины для защиты металлоконструкций от коррозии

В ассортименте продукции компании представлен материал обладающий свойствами преобразователя ржавчины —
АКТЕРМ Plast Грунт-Эмаль 3 в 1 — одно из трех свойств есть преобразование ржавчины, помимо эмали и грунтовки.
При работе необходимо наносить материал на предварительно обработанную поверхность, убрав не прочно держащуюся
ржавчину при помощи сподручных средств, позволяющих “отшкурить” поверхность.

АКТЕРМ Грунт-эмаль Plast

Однокомпонентное быстросохнущее декоративное покрытие, применяется в качестве антикоррозийное защиты металлоконструкций, мосты, вышки сотовой связи, корпуса судов, кузовов автотранспорта и подвижного состава, эксплуатирующихся в условиях воздействия внешних климатических факторов. Стойкость к атмосферным воздействиям до 10 лет.
Колеруется в RAL.
Универсальная антикоррозийная защита металла

Покрытия от ржавчины

В разделе Антикоррозийная защита представлены все актуальные покрытия от ржавчины, выпускаемые компанией
АКТЕРМ. В зависимости от условий использования, условий нанесения, а так же других причин — вы сможете подобрать
наиболее подходящее для себя покрытие от ржавчины.

Грунт-эмаль 3 В 1 по ржавчине или эмаль по ржавчине

АКТЕРМ Plast Грунт-Эмаль 3 в 1 — позиционируется как универсальное антикоррозийное средство с тройным действием,
после нанесения: 1) антикоррозийная грунтовка 2) преобразование ржавчины 3) декоративные свойства (колеровка
в цвет по RAL).

По сравнению с существующими аналогами разработка компании АКТЕРМ — Грунт-эмаль Plast 3 в 1 обладает ключевыми
особенностями: материал быстро сохнет и имеет превосходные свойства: водостойкость, химическая стойкость,
анти-коррозия .

АКТЕРМ Грунт-эмаль Plast

Однокомпонентное быстросохнущее декоративное покрытие, применяется в качестве антикоррозийное защиты металлоконструкций, мосты, вышки сотовой связи, корпуса судов, кузовов автотранспорта и подвижного состава, эксплуатирующихся в условиях воздействия внешних климатических факторов. Стойкость к атмосферным воздействиям до 10 лет.
Колеруется в RAL.
Универсальная антикоррозийная защита металла

Состав холодного цинкования

Принцип работы составов холодного цинкования в качестве антикоррозийной защиты металлоконструкций относится
к классу протекторов, цинк, наносимый на защищаемую поверхность, выступает в роли анода, отдавая тем самым
электроны катоду — защищаемой железной поверхности, образовывая цинковые соединения останавливающие
физические процессы коррозии.

В ассортименте компании АКТЕРМ представлены два вида составов холодного цинкования, АКТЕРМ ЦИНК и
АКТЕРМ ЦИНК Про. Принципиальное их отличие — то что ЦИНК Про является двухкомпонентным покрытием, которое
можно называть цинковой грунтовкой. ЦИНК Про предназначен для экстремальных погодных условий, частого
взаимодействия поверхности с соленой морской водой и прочими жесткими погодными условиями.

АКТЕРМ Цинк

Состав холодного цинкования в основе которого находится 96% цинка, обладает электрохимической защитой металла, а также протекторным действием – сравним по защитным свойствам с горячим и гальваническим способами цинкования. Состав пригоден для наружных и внутри проветриваемых помещений.
Электро-химическая защита металла + антикоррозия металла

АКТЕРМ Цинк ПРО

двухкомпонентный цинконаполненный эпоксидный грунт, обеспечит надежную защиту конструкции на открытом воздухе в условиях повышенной влажности, в соленой и морской воде, щелочей, горюче-смазочных материалов, химостойкое, ударопрочное глянцевое покрытие. Применение: суда, морские сооружения, нефте-перерабатывающие и целлюлозно-бумажные заводы, мосты, электростанции, подвижной состав.Срок службы до 25 лет.
Состав холодного цинкования для экстремальных погодных условий

Способы нанесения антикоррозийной защиты металлоконструкций

Нанесение кистью

Самый популярный способ нанесения — используйте кисть с синтетическим волокном

Нанесение валиком

Используется любой строительный валик с мелким ворсом

Безвоздушное распыление

Профессиональный метод нанесения антикоррозийной краски для защиты металла GRACO и другие

Антикоррозийная защита металлоконструкций

Навигация по странице:

Металлические конструкции с незащищенной поверхностью плохо переносят контакты с почвой, жидкостями и газами (включая атмосферный воздух).

Электрохимические и химические взаимодействия металлов с окружающей средой провоцирует коррозию.

Наиболее уязвимыми являются железо, его сплавы и алюминий.

Этот процесс способствует уменьшению поперечного сечения конструктивных элементов и – как следствие – снижению их несущей способности и долговечности.

Предотвратить разрушение металлоконструкции можно при помощи антикоррозионной обработки поверхности.

При помощи специальных покрытий исключается прямое соприкосновение металла с агрессивной средой.

Антикоррозийная защита металлоконструкций процесс нанесения

Виды коррозии металлоконструкций

По своей природе коррозия делится на:

  1. Химическую. Она возникает при прямом воздействии агрессивных сред – газов и жидкостей — на металл.
  2. Электрохимическую. Характеризуется наличием реакции в месте соприкосновения металлического элемента с электролитом.

По типу поражения металлоконструкции коррозия может быть:

  1. Сплошной. Равномерно покрывает поверхность материала, постепенно проникая в его толщу. Если ржавчину этого типа зачистить до чистого металла, его поверхность будет шероховатой, но трещин, точек коррозии и язв на нем не будет. Наблюдается это явление чаще всего под гайками, головками болтов, в зазорах и узких щелях, местах скопления влаги и пыли. Сплошная коррозия поражает сталь, алюминий, а также защитные покрытия (цинковые и алюминиевые) под воздействием сред высокой агрессивности.
  2. Локальной. Она может проявляться в виде пятен, точек и язв. Первому варианту свойственно неглубокое проникновение в тело металла. Язвенное повреждение материала может спровоцировать возникновение охрупчивания и усталости металла — трещин. Питтинговая (точечная) коррозия характерна для нержавеющей стали и алюминиевых сплавов. Источников такого поражения являются хлоридовозбудители. Диаметр точек не превышает 2 мм, но глубина их значительно больше поперечного размера питтинга.
  3. Межкристаллитной. Проявляется наличием множества трещин на обширных площадях конструкций. Локализуется на границах зерен материала, приводя к их выкрашиванию и, как следствие – к образованию язв и поверхностному шелушению.
  4. Расслаивающей. Распространяется в плоскостях, параллельных направлению горячей деформации металла – экструзии, прокатки или прессования.
  5. Гальванической (контактной). Возникает при наличии контакта между разнородными металлами при одновременном воздействии на них одного электролита. Зона распространения зависит от степени равномерности распределения последнего по поверхности конструкции. В грунте и воде она может распространяться на десятки метров, а в атмосферном воздухе – до нескольких миллиметров.

Кроме рассмотренных выше видов коррозий существуют и такие, как щелевые, коррозионные растрескивания и усталость, повреждения, вызванные неравномерной аэрацией, токами от внешних источников.

Независимо от причины корродирования, итог этого явления одинаков: снижается прочность металлоконструкции, тратятся больше суммы на их реставрацию или замену.

Избежать потерь можно, защитив элементы антикоррозионным покрытием. Но и оно будет эффективным только в случае качественной подготовке поверхности.

Технология подготовки поверхности, очистки металла

Суть предварительной обработки металла заключается в его тщательной очистке. Делается это разными способами.

Гидродинамическая очистка

В данной технологии основная роль отводится воде или специальным жидкостям, подаваемым под высоким давлением в рабочую зону. С поверхности снимаются загрязнения разного рода – окалина, ржавчина, остатки старой краски и пр.

Давление (МПа) струи может быть:

  • низким – до 34;
  • средним – от 34 до 70;
  • высоким – 70-170;
  • сверхвысоким – более 170.

Очистку производят при помощи ручных или промышленных установок. В их состав входят помпа или насос, двигатель (электрический, дизельный либо бензиновый), шланг с насадками и фильтрами и разные приспособления.

Оборудование подбирается по скорости подачи и давлению струи. Мощные установки оснащены усилителями потока.

Методы защиты металлических конструкций от

Коррозии

Для защиты металлических конструкций от коррозии суще-

ствует комплексный подход, заключающийся в:

— конструктивной защите – выбор конструктивных реше-

ний на стадии проектирования;

— выборе материала –правильный выбор металла в соответствии с особенностями эксплуатации и характером агрессивности окружающей среды;

— воздействии на среду эксплуатации – изменение состава

эксплуатационной среды для снижения ее коррозионной актив-

— изоляции сооружения от электролитической среды –

устройство защитных покрытий металлических конструкций;

— электрохимической защите – изменение электрического

Выбор методов защиты металлоконструкции от коррозии

должен выполняться на стадии проектирования в зависимости

от характеристик среды эксплуатации, полученных по результа-

там ее обследования. Грамотное проектирование заключается в

подборе металлов, сплавов, соответствующих уровню агрессив-

ности окружающей среды.

Некоторые металлы (например, алюминий, железо, хром, ни-

кель, титан и др.) сами предохраняют себя от коррозии вследст-

вие образования на их поверхности защитных пассивирующих

пленок при взаимодействии с эксплуатационной средой. Однако

способность к пассивации у них различна. Например, алюминий

становится пассивным в естественных условиях, поэтому его

применяют в конструкциях, эксплуатируемых в атмосферной

среде. В другие, широко используемые металлы (например, же-

лезо), при необходимости вводят добавки, пассиваторы корро-

При конструировании по возможности необходимо избегать

контакта металлов, имеющих разный электродный потенциал.

Если в этом есть насущная необходимость, то анодные участки

выполняют значительно большего объема и площади, чем ка-

На практике стремятся применять такие конструктивные ре-

шения, которые обеспечивали бы по возможности отсутствие

застойных зон для снижения вероятности возникновения анод-

Поскольку пассивность большинства металлов легко нару-

шаема при механических повреждениях конструкции, повыше-

нии температуры окружающей среды, действии коррозионно-

активных ионов кислорода, водорода, хлора, соединений серы и

т.д., в процессе эксплуатации необходимо поддерживать опре-

деленный состав коррозионной среды и одновременно восста-

навливать защитные покрытия.

Кроме того, в процессе эксплуатации также выполняют оп-

ределенные мероприятия для уменьшения риска коррозионных

повреждений, например, очищают поверхность металлических

конструкций от грязи и ржавчины.

Защитные покрытия

Цель защитных покрытий заключается в изоляции металло-

конструкции от внешней агрессивной среды для защиты от кор-

розии или замедления коррозионного процесса.

К защитным покрытиям предъявляются следующие требова-

— непроницаемость для компонентов агрессивной среды;

— хорошая адгезия с поверхностью металлической конст-

— высокая стойкость к воздействию окружающей среды;

— коэффициент линейного расширения, близкий по вели-

чине к аналогичному коэффициенту металлической конструк-

Защитные покрытия бывают металлические и неметалличе-

ские, которые особенно широко распространены.

К неметаллическим покрытиям относятся окрасочные, обма-

зочные и рулонные покрытия (полимерные, полиуретановые,

битумные, резинобитумные, керамические, пластиковые и т.д.).

Окрасочные покрытия наносят в основном на конструкции, экс-

плуатируемые в атмосферной среде. Они представляют собой

краски, лаки, пасты, эмали (масляные, эпоксидные, силиконо-

вые, ПХВ, с металлической крошкой, с пигментами и пр.).

Перед нанесением защитного покрытия в условиях эксплуа-

тации поверхность конструкции необходимо подготовить, т.е.

как правило, очистить от ржавчины, провести обезжиривание,

технологически правильно уложить изоляционное покрытие.

В составе современных красок присутствуют преобразовате-

ли продуктов коррозии, которые вступают с ними во взаимодей-

ствие и превращают ржавчину в коррозионно-неактивные со-

единения (ПВА эмульсии, алкидные смолы и т.д.).

Современные защитные покрытия наносят, как правило, в

заводских условиях, что повышает надежность и долговечность

Воздействие на среду эксплуатации

Подземные металлические конструкции защищают изоляци-

онными покрытиями. Вместе с тем, их защита может быть дос-

тигнута также уменьшением коррозионной активности грунто-

вой среды. Известны следующие способы:

— обработка среды химическими веществами для нейтрали-

зации ее агрессивности (известкование, гидрофобизация и т.д.);

— изоляция от эксплуатационной среды (прокладка трубо-

проводов в тоннелях, коллекторах и пр.).

Способ замены среды заключается в выемке коррозионно

-активного грунта и замене его менее активным грунтом, отхо-

дами промышленных производств с допустимым показателем

Обработка среды химическими веществами представляет со-

бой, на пример, обработку грунтов гашеной известью или кар-

бонат–содержащими отходами производств, повышающими рН

кислых грунтов до 8-11 (известкование). Скорость коррозии в

этом случае уменьшается в 5-6 раз. Необходимым условием яв-

ляется изоляция необработанных участков конструкции, иначе

на границе контакта конструкций, эксплуатирующихся в раз-

личных грунтовых условиях, может начаться коррозионный

Гидрофобизация грунтов заключается в снижении их влаж-

ности путем нагнетания в грунт гидрофобных составов (на ос-

нове смол, торфяного дегтя или кремнийорганических соедине-

ний), что способствует затуханию процесса коррозии.

Для защиты трубопроводов от внутренней коррозии также

применяют метод изменения коррозионной активности среды

эксплуатации, в данном случае воды, заключающийся:

— в ведении специальных добавок – ингибиторов;

— в термической деаэрации.

Агрессивные свойства воды, как уже было сказано выше, оп-

ределяет наличие свободного кислорода и диоксида углерода, а

также коррозионно-активных примесей сульфат- и хлорид-

В процессе ингибирования химически активные вещества

связываются в нерастворимые соединения, осаждаемые на стен-

В процессе фильтрования вода проходит через специальные

фильтры, которые снижают количество диоксида углерода до

равновесного значения (например, магномассовые фильтры) или

количество растворенного кислорода (например, сталестружеч-

Метод деаэрации основан в эффекте улетучивания кислорода

при повышении температуры воды.

Электрохимическая защита

Электрохимическая защита от коррозии применяется для

предупреждения подземной коррозии металлоконструкций, а

также коррозии, вызванной действием блуждающих токов. Дан-

ный метод защиты заключается в предотвращении окисления

атомов металла на его поверхности. Этого удается добиться,

если сместить потенциал металла относительно грунта на доста-

точную величину в катодную область.

При смещении потенциала в отрицательную область, т.е. в

катодную сторону, подавляются реакции окисления, и сущест-

венно замедляется скорость коррозии. В зависимости от состава

и характеристик среды эксплуатации для достижения одного и

того же эффекта подавления коррозии требуется различная ве-

личина смещения потенциала. Поэтому в практике защиты под-

земных металлических сооружений существует т.н. минимальное значение защитного потенциала, которое выбирают исходя

из условий эксплуатации по справочным данным. На всем про-

тяжении конструкции потенциал должен быть отрицательнее

принятого минимального значения.

Различают два способа электрохимической защиты:

— катодная защита (с помощью наложенного на поверх-

ность металлоконструкции внешнего электрического постоян-

— протекторная защита (присоединение защищаемой по-

верхности металлоконструкции к более электроотрицательным

Катодную поляризацию металлоконструкции осуществляют

с помощью подвода постоянного тока от источника питания –

станции катодной защиты (СКЗ).

Одним проводом СКЗ соединена с конструкцией, а

другим – с анодным заземлителем, который обычно изготавли-

вают из низкосортной стали или чугуна и помещают в специ-

альную засыпку. Расход заземлителя из железа составляет в со-

ответствии с законом Фарадея 9,15 кг/А·год.

В задачу расчета СКЗ входит определение необходимых на-

пряжения и силы тока, которые требуются для обеспечения за-

щитного потенциала на всем протяжении зоны защиты, а также

срока службы заземлителя.

Для обеспечения эффективной защиты необходимо, чтобы на

всем протяжении защищаемого участка конструкции сохранялся

достаточный для подавления коррозионных процессов катодный

потенциал. Добиться этого можно двумя способами. Первый

способ предполагает равномерную поляризацию всего участка.

Для этого необходимо расположить вдоль всей конструкции

аноды и подвести к ним электропитание с помощью проводни-

ков с малым электрическим сопротивлением или рассредото-

чить вдоль конструкции большое количество маломощных ис-

точников тока. Такой подход чаще всего оказывается экономи-

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector