0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Какое строение имеет металлическая кристаллическая решетка?

Кристаллическое строение металлов. Кристаллическая решетка металлов. Металлы в периодической системе Менделеева

Из школьного курса химии известно, что все элементы, которые сгруппированы по определенным правилам в периодическую таблицу Менделеева, можно условно разделить на металлы и неметаллы. В этой статье будет рассказано о кристаллическом строении металлов, их физико-химических свойствах, а также о дефектах на атомном уровне, которые в них присутствуют.

Периодическая таблица и металлы

В XIX веке благодаря своему блестящему уму и многим годам труда Дмитрий Иванович Менделеев составил таблицу, собрав в нее все известные на то время химические элементы. Каждому из них в таблице отведено определенное положение в соответствии с числом протонов в атомном ядре. Вся таблица делится на 7 периодов (горизонтальные строки) и 8 групп (вертикальные строки). Чем больше период, тем больше радиус атома соответствующего элемента, и тем на более высоких орбиталях расположены его валентные электроны. Наоборот, чем старше группа (движение по таблице слева направо), тем больше валентных электронов находится на последней орбитали и тем меньше радиус атома.

Любой элемент таблицы можно условно отнести либо к металлам, либо к неметаллам. Металлы расположены по левую сторону от диагонали бор (B) — полоний (Po). Если взглянуть на таблицу, то можно сразу понять, что количество металлов в несколько раз превышает число неметаллов.

Что такое металл и чем он отличается от неметалла?

Иными словами, как можно понять, что перед нами находится металлический материал? Ответы на все эти вопросы можно получить, если рассмотреть уникальные свойства металлов. К ним относятся следующие основные:

  • Наличие металлического блеска при полировке поверхности. Все металлы блестят, в своем большинстве они имеют серый цвет, однако, некоторые металлы обладают специфической окраской, например, висмут розовый, медь красноватая, а золото желтое.
  • Высокая теплопроводность и электропроводность. При комнатной температуре наиболее высокие показатели для этих физических свойств характерны для меди и серебра.
  • При комнатной температуре практически все металлы находятся в твердом агрегатном состоянии материи. Исключение составляет ртуть, которая плавится уже при -39 o C.
  • Будучи в твердом состоянии, металлы кристаллическим строением характеризуются. Если расплав рассматриваемого материала слишком быстро охлаждать, то он приобретает аморфную структуру, в которой все же сохраняется ближний порядок.
  • Температуры плавления и плотности металлов варьируются в широких пределах. Так, элемент вольфрам является самым тугоплавким (3410 o C). Самым же тяжелым считается осмий (в 22,6 раза плотнее воды), а самым легким — литий (почти в 2 раза менее плотный, чем вода).
  • Все металлы химически активны. Поскольку они обладают низкой электроотрицательностью, то в химических реакциях их атомы отдают электроны и превращаются в положительно заряженные ионы (катионы).

Выше в списке были перечислены основные свойства металлов, которые их отличают от неметаллических материалов. Примерами последних являются кислород, азот, благородные газы, сера, кремний, углерод и некоторые другие. Заметим, что все живые организмы состоят в основном из неметаллов.

Какие металлы бывают?

Металлы в периодической системе Менделеева делятся на несколько групп. Перечислим и кратко охарактеризуем их:

  • Щелочные. Эти металлы имеют всего 1 валентный электрон, они чрезвычайно химически активны, имеют низкую плотность и являются отличными проводниками тепла и электричества. Примерами их являются литий, натрий и калий.
  • Щелочноземельные. К ним относятся кальций, магний, стронций. Эти металлы имеют 2 валентных электрона, поэтому они также являются химически активными.
  • Переходные. Это металлы с переменной валентностью, которые имеют пустые или полупустые орбитали d и f типа. Это самая многочисленная группа металлов. К ним относятся титан, ванадий, хром, никель, вольфрам, осмий, золото и многие другие.
  • Лантаноиды и актиноиды. Большая часть этих элементов является нестабильными и проявляет различную степень радиоактивности.
  • Постпереходные. Это те элементы, после которых по периоду идут металлоиды, а затем неметаллы. Самыми известными из них являются свинец, алюминий и олово.

Черные и цветные металлы

Выше была приведена классификация рассматриваемых элементов в соответствии с их электронным строением и положением в периодической системе. Помимо нее, существует еще одно разделение, которое не связано с атомным строением — это понятие о черных и цветных металлах.

Черным является железо и все сплавы с его участием. Примеры цветных металлов — это алюминий, золото, серебро, медь и другие, а также сплавы, которые не содержат железа. Причина такого разделения проста, черные металлы являются дешевыми и недолговечными (разрушаются в результате коррозии, ржавеют). Наоборот, цветные металлы характеризуются способностью образовывать пленки оксидные, которые предотвращают основную массу материала от дальнейшего химического разрушения.

Металлическая связь

Изучая атомно-кристаллическое строение металлов, следует сказать несколько слов об особенностях химической связи между рассматриваемыми элементами. Поскольку электроотрицательность металлов низкая, то, объединяясь в кристаллическую решетку, каждый атом отдает один или несколько валентных электронов. Эти электроны слабо связаны с ядром, поэтому они легко от него отрываются уже при комнатных температурах.

Совокупность валентных электронов, которые свободно движутся в пространстве между ионными остовами в кристаллической решетке металлов, называется электронным газом. Благодаря ему кусок металла легко проводит тепло и электричество.

Электрическое поле положительно заряженных ионных остовов компенсируется отрицательным полем «размазанного» по объему металла электронного газа. Такая связь называется металлической. Она кардинальным образом отличается от других типов химической связи. Например, в ковалентной атомы не отдают электроны в межатомное пространство, они становятся общими только для двух атомов. Наоборот, в ионной связи один атом полностью лишает второго валентных электронов, присоединяя их к себе, и приобретая отрицательный заряд.

Кристаллическое строение металлов. Типы кристаллических решеток

Когда металл образует твердую структуру, то все его атомы стремятся занять такие положения в пространстве относительно друг друга, чтобы они соответствовали минимуму потенциальной энергии. Этому минимуму соответствует кристаллическая решетка.

Под кристаллической решеткой понимают такую пространственную атомную структуру, которая может быть получена, если известны координаты ограниченного числа ее атомов и вектора их трансляции в пространстве. Указанное число атомов называется базисом решетки, а их положения образуют так называемую элементарную ячейку.

Все металлы кристаллизуются в трех основных типах решеток:

  • гранецентрированная кубическая (ГЦК);
  • объемно-центрированная кубическая (ОЦК);
  • гексагональная плотноупакованная (ГПУ).

Благодаря кристаллическому строению металлы обладают такими свойствами, как пластичностью, упругостью и металлическим блеском.

Решетки ГЦК, ОЦК, ГПУ

Изучая кристаллическое строение металлов, охарактеризуем подробнее каждый тип кристаллической решетки. Начнем с ГЦК. Она показана ниже на рисунке.

Как видно, это решетка представляет собой кубик, в котором атомы расположены в его вершинах и в центрах всех шести граней. Применяя методы кристаллографии, несложно показать, что для получения такой решетки в пространстве достаточно всего четырех атомов и векторов трансляций, совпадающих с ребрами куба.

Примерами металлов, которые кристаллизуются в ГЦК, являются алюминий, медь, золото и серебро. Железо образует ГЦК решетку только при высоких температурах.

ОЦК решетка показана ниже.

Мы видим, что она соответствует кубику, в вершинах и в центре которого находится атом. Всего два атома необходимо, чтобы в прямоугольных декартовых координатах построить ОЦК решетку. Такие металлы, как ванадий, тантал, ниобий, вольфрам имеют именно эту кристаллическую структуру.

Наконец, ГПУ решетка. Она представлена ниже на рисунке.

Эта кристаллическая решетка металлов отличается от двух предыдущих тем, что она в пространстве образует не куб, а правильную шестиугольную призму, которая состоит из шести атомов. В данной структуре кристаллизуются такие элементы, как титан, цирконий, магний и кобальт.

Понятие об индексах Миллера

Чтобы удобно было описывать численно показанные выше пространственные решетки, в кристаллографии используют так называемые индексы Миллера. Они представляют собой наборы чисел, которые позволяют точно определить положение в пространстве данного атомного ряда или атомной плоскости. По этим числам судят о поверхностных энергиях, о способности металлов проявлять пластические свойства. Например, в ГЦК решетке краевые дислокации движутся по плоскостям (1,1,1) (эти плоскости являются максимально плотноупакованными, нормалью к ним будут диагонали куба).

Дефекты в металлах

Выше мы показали идеальную ситуацию, когда все атомы находятся на своих местах, и пространственную структуру всего металлического куска можно получить с помощью простых трансляций элементарной ячейки. В действительности же существуют множество несовершенств кристаллического строения металлов. Они называются дефектами.

Все дефекты можно по геометрическому признаку отнести к одному из четырех типов:

  1. Точечные. Вакансии, межузельные атомы, наличие внедренных атомов других элементов, создающих микроскопические локальные напряжения.
  2. Линейные. Дислокации — обрывы кристаллических плоскостей, которые обеспечивают пластичность всех металлов.
  3. Плоские — границы зерен. Любой металл состоит из множества монокристаллов, которые друг с другом соединены в различной ориентации через межзеренные границы.
  4. Объемные. Поры, различные фазовые включения, которые упрочняют металл и снижают его пластичность.

Влияние дефектов на свойства

Как правило, дефекты кристаллического строения металлов приводят к снижению их теплопроводности и электропроводности, материал становится более прочным и менее пластичным. Ярким примером является сталь, которая за счет междоузельных атомов углерода и наличия разных фаз (цементита, графита) в кристаллической решетке железа, значительно прочнее, чем чистый металл.

С развитием нанотехнологий влияние дефектов на свойства металлов может быть неоднозначным. Так, с уменьшением размера зерна может наблюдаться увеличение пластичности материала, что связано с появлением совершенно иного механизма пластической деформации — зернограничного проскальзывания, которое по своей сути отличается от дислокационного.

Реальный кристалл металла

Какой бы химический металлический элемент не рассматривался, в действительности он представляет собой твердое вещество, в котором маленькие монокристаллы (зерна) соединены друг с другом в различных ориентациях. Такая структура образует поликристалл. В нем, помимо границ зерен, присутствуют дефекты всех четырех типов, включая примеси таких неметаллов, как кислород, азот и водород. Последний из-за своих размеров легко проникает в любую кристаллическую решетку, образует с ее ионами твердые фазы, которые приводят к охрупчиванию металла, что является одной из актуальных проблем металловедения.

1.Металлы. Строение и свойства металлов. Металлическая связь. Типы кристаллических решёток металлов. Полиморфизм и анизотропия.

Кубическая (1 атом на ячейку), а)

Объемно-центрированная кубическая (ОЦК) (2 атома на ячейку), б)

Гранецентрированная кубическая (ГЦК) (4 атома на ячейку), в)

Гексагональная плотноупакованная (ГП) (6 атомов на ячейку), г)

Рис. 2. Основные типы кристаллических решеток металлов

Основу ОЦК-решетки составляет элементарная кубическая ячейка (рис. 2, б), в которой положительно заряженные ионы металла находятся в вершинах куба, и еще один атом в центре его объема, т. е. на пересечении его диагоналей. Такой тип решетки в определенных диапазонах температур имеют железо, хром, ванадий, вольфрам, молибден и др. металлы.

У ГЦК-решетки (рис. 2, в) элементарной ячейкой служит куб с центрированными гранями. Подобную решетку имеют железо, алюминий, медь, никель, свинец и др. металлы.

Третьей распространенной разновидностью плотноупакованных решеток является гексагональная плотноупакованная (ГПУ, рис. 2, г). ГПУ-ячейка состоит из отстоящих друг от друга на параметр с параллельных центрированных гексагональных оснований. Три иона (атома) находятся на средней плоскости между основаниями.

У гексагональных решеток отношение параметра с/а всегда больше единицы. Такую решетку имеют магний, цинк, кадмий, берилий, титан и др.

Компактность кристаллической решетки или степень заполненности ее объема атомами является важной характеристикой. Она определяется такими показателями как параметр решетки, число атомов в каждой элементарной ячейке, координационное число и плотность упаковки.

Параметр решетки – это расстояние между атомами по ребру элементарной ячейки. Параметры решетки измеряется в нанометрах (1 нм = 10 -9 м =10 A). Параметры кубических решеток характеризуются длиной ребра куба и обозначаются буквой а.

Для характеристики гексагональной решетки принимают два параметра – сторону шестигранника а и высоту призмы с. Когда отношение с/а =1,633, то атомы упакованы наиболее плотно, и решетка называется гексагональной плотноупакованной (рис. 1, г). Некоторые металлы имеют гексагональную решетку с менее плотной упаковкой атомов (с/а > 1,633). Например, для цинка с/а = 1,86, для кадмия с/а = 1,88.

Параметры а кубических решеток металлов находятся в пределах от 0,286 до 0,607 нм. Для металлов с гексагональной решеткой а лежит в пределах 0,228-0,398 нм, а с в пределах 0,357-0,652 нм.

Параметры кристаллических решеток металлов могут быть измерены с помощью рентгеноструктурного анализа.

При подсчете числа атомов в каждой элементарной ячейке следует иметь в виду, что каждый атом входит одновременно в несколько ячеек. Например, для ГЦК-решетки, каждый атом, находящийся в вершине куба, принадлежит 8 ячейкам, а атом, центрирующий грань, двум. И лишь атом, находящийся в центре куба, полностью принадлежит данной ячейке.

Рис. 3. Координационное число в различных кристаллических решетках для атома А: а) – объемноцентрированная кубическая (К 8); б) – гранецентрированная кубическая (К 12); в) – гексагональная плотноупакованная (Г 12)

Таким образом, ОЦК- и ГЦК-ячейки содержат соответственно 2 и 4 атома.

Под координационным числом понимается количество ближайших соседей данного атома.

В ОЦК решетке (рис. 3, а

) атом
А
(в центре) находится на наиболее близком равном расстоянии от восьми атомов, расположенных в вершинах куба, т. е. координационное число этой решетки равно 8 (К 8).

В ГЦК решетке (рис. 3, б)

атом
А
(на грани куба) находится на наиболее близком равном расстоянии от четырех атомов
1
,
2, 3, 4,
расположенных в вершинах куба, от четырех атомов
5, 6, 7, 8,
расположенных на гранях куба, и, кроме того, от четырех атомов
9, 10, 11, 12,
принадлежащих расположенной рядом кристаллической ячейке. Атомы
9, 10, 11, 12
симметричны атомам
5
,
6, 7, 8.
Таким образом, ГЦК решетки координационное число равно 12 (К 12).

В ГПУ решетке при с/а =

1,633 (рис. 3,
в
) атом
А
в центре шестигранного основания призмы находится на наиболее близком равном расстоянии от шести атомов
1
,
2, 3, 4, 5, 6,
размещенных в вершинах шестигранника, и от трех атомов
7, 8, 9,
расположенных в средней плоскости призмы. Кроме того, атом
А
оказывается на таком же расстоянии еще от трех атомов
10, 11, 12,
принадлежащих кристаллической ячейке, лежащей ниже основания. Атомы
10, 11, 12
симметричны атомам
7, 8, 9.
Следовательно, для ГПУ решетки координационное число равно 12 (Г 12).

Плотность упаковки представляет собой отношение суммарного объема, занимаемого собственно атомами в кристаллической решетке, к ее полному объему. Различные типы кристаллических решеток имеют разную плотность упаковки атомов. В ГЦК решетке атомы занимают 74 % всего объема кристаллической решетки, а межатомные промежутки (“поры”) 26 %. В ОЦК решетке атомы занимают 68 % всего объема, а “поры” 32 %. Компактность решетки зависит от особенностей электронной структуры металлов и характера связи между их атомами.

От типа кристаллической решетки сильно зависят свойства металла.

У некоторых металлов кристаллическая решетка может изменяться при изменении температуры. Это явление называется полиморфизмом

или
аллотропией
. Полиморфизм может вызывать изменение свойств.

Общее строение

Металлы – твёрдые вещества, имеющие кристаллическое строение. Исключение составляет ртуть – жидкий металл. Кристаллические решётки представляют собой упорядоченные определённым образом атомы металла. Каждый атом состоит из положительно заряженного ядра и нескольких отрицательно заряженных электронов. В атомах металлов недостаточно электронов, поэтому они являются ионами.

Единица кристаллической решётки – элементарная кристаллическая ячейка, в условных узлах и на гранях которой находятся положительно заряженные ионы. Их удерживают вместе металлические связи, возникающие за счёт беспорядочного движения отделившихся от атомов электронов (благодаря чему атомы превратились в ионы).

Рис. 1. Схема металлической связи.

Свободное движение электронов обусловливает электро- и теплопроводность металлов.

Химическая связь. Часть 2. Типы кристаллических решеток

    Опубликовано 31.08.2020Образование

Химическая связь. Часть 2. Типы кристаллических решеток

Продолжаем нашу тему по химической связи и сегодня изучаем кристаллическое состояние вещества, понятия ионная связь, металлическая связь из 4 задания егэ по химии.

Итак, для понимания материала давайте возьмем с вами стакан с плоским дном и насыплем в него бусины (пусть они будут круглые) в один слой. У нас получился моноатомный слой. Кстати пусть одна бусина отличается по цвету от других. Назовем ее центральной.

Рассмотрим наше построение и сделаем первые выводы:

  1. Любая бусина окружена шестью другими (пусть они будут под цифрами 1-6)
  2. Поверхность слоя имеет неровности, возвышения и впадины. Каждая бусина – это возвышенность, между тремя любыми соприкасающимися бусинами – впадина.
  3. Расположение бусин в слое можно представить в виде сетки из перекрёстных линий, а в точках пересечения линий располагаются бусины. Эти точки именуются узлами сетки. Так как все ячейки нашей сетки идентичны между собой, то для описания геометрического расположения частиц в слое можно указать параметры одной ячейки. В этом случае ячейка представляет собой ромб с острым углом равным шестидесяти градусам, и длиной стороны, равной удвоенному радиусу бусины.

Начинаем строить второй монослой. Его укладываем на первый монослой, при этом одну бусинку мы укладываем на первый слой так, чтобы она соприкасалась с нашей центральной. А значит она у нас расположится во впадине. Вокруг центральной бусины у нас располагаются шесть впадин, а расстояние между ними чуть больше радиуса бусины. Значит во втором слое бусин с центральной бусиной у нас соприкоснуться уже три бусины, вместо шести (обозначим их как 7-9). Хорошо видно, что три бусины второго слоя можно расположить несколькими способами:

  1. помещаем их во впадины между Ц, 1, 2; Ц 3,4; Ц,5,6;
  2. помещаем в углубления Ц, 2, 3; Ц, 4, 5; Ц, 1, 6;
Читать еще:  Как снять выключатель со стены

По отношению к центральной бусине все варианты абсолютно одинаковые. Давайте возьмем первый слой размещения бусин для второго монослоя. Так как центры частиц первого и второго слоев не совпадают, то сетка второго слоя смещена относительно первого.

Начинаем заполнять третий слой после второго. Тут тоже есть два варианта расположения. Они абсолютно неидентичных между собой. В первом случае бусина помещается в впадину А и тогда у нас сетка сдвигается на треть. Очерчиваем мысленно окружность вокруг точки А и понимаем, что в этом случае сетка четвертого слоя совпадает с первым слоем.

Другой случай — это расположение бусин третьего слоя во впадинах Б. В таком случае сетка третьего слоя совпадает с сеткой первого, а сетка второго – с стекой четвертого.

То есть у нас существует несколько типов упаковки бусин в виде чередования слоев. Это 1, 2,1,2,1,2 и 1,2,3,1,2,3,1,2,3.

В первом случае – речь идет о так называемой гексагональной упаковке, а во втором о кубической.

Большое количество металлов кристаллизуются по одному из этих типов плотной упаковки.

При этом как бы не старались заполнить пустоты бусинами, все равно часть пространства будет пустым. А теперь посмотрим на бусины через боковые стенки сосуда. Видно, что три бусины одного слоя и одна другого образуют систему за которой, скрывается пустота. Центры этих четырех бусин располагаются в вершинах тетраэдра , а значит пустота именуется тетраэдрической.

Октаэдрический тип –это образование пустоты между тремя бусинами одного слоя и тремя другого.

Роль таких пустот чрезвычайно важно при образовании кристалла частицами с разным размером. В этом случае у нас частицы с большим радиусом располагаются так, чтобы получилась плотная упаковка, а меньшие располагаются в образованных этими частицами пустотами.

Совокупность сеток, советующих всем слоям частиц кристалла, представляет собой пространственную систему, именуемой кристаллической решеткой. Среди характеристик сетки можно выделить параметры ячейки ее размеры, сторон и величину углов. Существует огромное множество форм кристаллических решеток. Изучением кристаллических решеток занимается кристаллография.

А теперь давайте рассмотрим кристалл не с точки зрения его «устройства», а с точки зрения химических сил, обеспечивающих связь в этих кристаллах.

Типы химической связи

По характеру связи между частицами кристаллы подразделяются на четыре вида: молекулярные, атомные, ионные и металлические. Конечно, вы помните, что не может быть стопроцентной одной связи (только ионной или только металлической, важно какой вид преобладает). Давайте рассмотрим каждый тип подробно.

Молекулярная кристаллическая решетка

Молекулярная решетка в своих узлах имеет молекулы. Связь между молекулами обеспечивается за счет Ван-дер-Вальсового взаимодействия. Это достаточно слабые взаимодействие, поэтому внутримолекулярные и межмолекулярные расстояния между атомами абсолютно разные. За счет малой энергии ван-дер-ваальсового взаимодействия по сравнению с ковалентной связью в молекулах, кристаллы с молекулярным типом кристаллической решетки легко переходят в газообразное состояние при достаточно низких температурах. Большинство органических соединений имеют молекулярный тип решетки из неоргаников — это водород, сера, вода, азот, иод.

Атомная кристаллическая решетка

Атомный тип кристаллической решетки. К таким кристаллам относится алмаз, атом углерода в котором окружен четырьмя другими атомами, равноудаленных от него. Все связи между атомами имеют одинаковую длину и равную энергию. Атомный кристалл характеризуется единой системой химических связей. Атомы связаны направленными, локализованными ковалентными связями. Они определяют энергетические характеристики кристалл, группировки атомов. Ковалентные связи в атомных решетках имеют высокую прочность, соответственно разрушить подобный кристалл весьма проблематично, особенно по сравнению с молекулярным. Вещества с атомными решетками имеют высокую прочность, и высокую температуру плавления и кипения.

Ионная кристаллическая решетка

Ионная кристаллическая решетка образуется чередующимися ионами противоположными по знакам. К примеру, кубический кристалл хлорида натрия (поваренная соль) относится к классическому примеру ионного кристалла. В ионной решетке нет возможности вычленить отдельную молекулу хлорида натрия – все ионы кристалла взаимодействуют между собой. То есть любой положительный ион натрия притягивает отрицательно заряженный ион хлора и отталкивает другие ионы натрия. Каждый ион в кристалле образует сферически симметричное электростатическое поле, взаимодействие между ионами происходит за счет кулоновских сил. Число соседей каждого иона определяется соотношением размеров ионов и принципом электронейтральности.

Энергетической характеристикой ионного кристалл является энергия ионной кристаллической решетки.

Энергия ионной кристаллической решетки – это энергия образования одного моля кристаллического вещества из свободных газообразных ионов. Рассчитывается исходя из законов электростатики, либо по циклу Борна-Габера.

Энергия ионной решетки сопоставима с энергией химических связей в атомных кристаллических решетках, что обуславливает достаточно прочные кристаллы и трудное их разрушение.

Металлическая кристаллическая решетка

Металлические кристаллические решетки имеют существенное отличие от молекулярных и атомных решеток. Кристаллы обладают характерным блеском, легко деформируются обладают высокими показателями теплопроводности и электропроводности. В металлическом кристалле атомы связаны друг с другом тем прочнее, чем больше электронов участвует в образовании связей. Это объясняет наличие в ряду металлов легкоплавки и легколетучих ( ртуть), щелочные металлы.

Надеемся мы смогли вам объяснить «на пальцах» очередной материал, необходимый для успешной подготовки к сдаче ЕГЭ по химии за минимальный срок.

Строение металлов. Часть 2.

Строение металлов. Часть 2.

Кристаллическая решетка сплавов

Имеют ли сплавы кристаллическую решетку и как она построена?

Разберем сначала, как получают сплавы. Их получают путем сплавления одних металлов с другими или металлов с неметаллами. Многие расплавленные металлы хорошо растворяются один в другом и дают твердый раствор. Медь хорошо растворяется в никеле, свинец — в сурьме и т. д.

Свойства сплава зависят.

Их свойства зависят не только от того, какие химические элементы входят в состав сплава, но и от структуры сплава, т. е. от того, как построена кристаллическая решетка сплава. Изучение сплавов показало, что составные части сплава могут образовать либо механическую смесь, когда при затвердевании сплава отдельные, составляющие его вещества образуют кристаллы, равномерно распределяющиеся в толще всего металла, или химические соединения, т. е. когда один из металл образует новое вещество с новыми химическими и физическими свойствами.

Механическая смесь.

Что такое механическая смесь? Вы знаете, что такую смесь можно получить из порошка железа и серы, причем эти вещества легко можно отделить друг от друга. Например, при взбалтывании в воде сера всплывает на поверхность, а металлический порошок железа оседает на дно.

Такого рода механические смеси встречаются и среди сплавов. Например, свинец и сурьма — это механическая смесь.

Рис.7. Сплав свинца с сурьмой (схема структуры)

Рассматривая такие сплавы в микроскоп, можно различить отдельные мельчайшие кристаллики свинца и сурьмы (рис. 7). Механическую смесь дает также алюминий с кремнием и висмут с кадмием. В твердых растворах металлы могут растворяться один в другом. При этом атомы одного металла равномерно распределяются в другом. При застывании атомы растворенного металла остаются рассеянными в другом металле, образуя твердый раствор. К таким растворам относят железо и углерод, железо и никель, железо и хром и др.

Металлы и их соединения.

Как же здесь построена кристаллическая решетка? Исследованиями многих ученых доказано, что твердые растворы могут быть построены по-разному. В том случае, когда твердый раствор содержит металлы, атомы которых имеют приблизительно одинаковые размеры, атомы растворенного металла не занимают каких-либо особых положений. Они замещают атомы растворителя в любом месте кристаллической решетки. Эти сплавы называют твердыми растворами замещения (рис. 8,а), к ним относятся сплавы железа с хромом, железа с никелем, железа с марганцем, сплав меди с никелем и кобальтом.

Однако могут быть такие твердые растворы, когда атомы растворителя по своим размерам отличаются от атомов растворенного вещества. В этом случае атомы растворяющегося элемента внедряются в промежутки кристаллической решетки между атомами растворителя. Такого рода твердые растворы называют растворами внедрения (рис. 8,б). Чаще всего растворы внедрения образуются при сплавлении металлов с неметаллами.

Рис.8. Строение твердых растворов:

а-раствор замещения; б-раствор внедрения.

Иногда при сплавлении отдельные частицы сплава могут соединяться с другими, образуя новое химическое вещество. Так, например, вольфрам соединяется с углеродом и получается новая составная часть — карбид вольфрама. Кристаллы химических соединений существуют в структуре сплава самостоятельно как одно из составных частей механической смеси или твердого раствора. Они обычно отличаются большой твердостью и хрупкостью. Особенно хрупки карбиды вольфрама, хрома, титана и др.

При нагревании металлов, так же, как и всех твердых кристаллических веществ, ноны, закрепленные в узлах кристаллической решетки, начинают колебаться все сильнее, и до тех пор, пока решетка сохраняется, кристалл остается твердым телом. Когда колебания ионов усиливаются настолько, что решетка разрушается, появляются первые следы жидкости. Поэтому все кристаллические вещества, в том числе и металлы, имеют совершенно определенную температуру плавления. Эта температура обусловливается прочностью связи атомов в кристаллической решетке. Наиболее легкоплавкий металл—ртуть, она плавится при температуре —38,87° С.

Наиболее высокоплавким металлом является вольфрам, температура плавления которого 3380° С.

Строение металлов. Часть 2.

Свойства металлов.

Металлы обладают высокой теплопроводностью. Большинство же неметаллических веществ, например, вода, стекло, воздух, дерево, кирпич, малотеплопроводны.

Как известно, наибольшей электропроводностью обладают серебро и медь. За ними следуют золото, хром, алюминий, марганец, вольфрам. Железо сравнительно плохо проводит электрический ток. Наименьшая теплопроводность у титана. Она в 300 раз меньше, чем, например, у серебра. Наилучшие проводники электрического тока обладают и наибольшей теплопроводностью. Следовательно, такие свойства металлов, как теплопроводность и электропроводность, связаны с их кристаллической решеткой. В дальнейшем мы сможем наблюдать, что стойкость металла к коррозийному воздействию напрямую зависит от его кристаллической решетки

Скорость коррозии.

Скорость разрушения металла различна. Разные виды металлических приборов, используемые в повседневном быту, не подвергаются видимой коррозии, но если бросить один из таких приборов в траву и оставить его на несколько дней, то он покроется пятнами ржавчины. Также, можно рассмотреть покрашенные трубы, используемые дома, и трубы, зарытые на улице, под землей, в этом случае трубы, которые пролегают под землей придут в негодность быстрее. Значит, можно сказать, что от условий в которых находится металл, зависит скорость разрушения и соответственно коррозия металла.

Установлено, что все виды металлов стремятся к своему естественному состоянию, к такому, какими они находились в природе. Даже если оставить металл при комнатной температуре и в условии сухого воздуха, он все равно потускнеет и станет матовым. На его поверхности образовывается тончайшая пленка окислов, она образуется благодаря химического взаимодействия кислорода воздуха с металлом.

Скорость коррозии может увеличиваться с повышением температуры. Кислород воздуха вступает в реакцию с поверхностными атомами металла, из-за чего образуется пленка окислов. В зависимости от прочности пленки она может препятствовать дальнейшей коррозии. Самые прочные пленки образуются на поверхностях алюминия и цинка. Пленки такого рода называются защитными. Значит, можно сказать, что коррозия не только разрушает металлы, но и защищает его.

Несколько иного характера пленки, появившиеся на железе. При высоких температурах на его поверхности образуются довольно прочные пленки. При нагревании слитков железа или стали до температуры 1200 — 1300° С могут получаться пленки толщиной в несколько миллиметров, а иногда при нагревании больших слитков толщина слоя окисла достигает 1 см. Пленки, образующиеся на железе при его нагревании, получили название окалины. Окалина обладает большой твердостью и хрупкостью. Она разными способами удаляется с поверхности металла.

На металл оказывает влияние не только кислород воздуха, но газы и пары воды, находящиеся в атмосфере. Например, сернистый газ, вступая во взаимодействие с поверхностью металла, разрушает его. Двуокись углерода, наоборот, вступая в соединение с поверхностными атомами металла, образует тонкую, прочную пленку, предохраняющую его от дальнейшего разрушения.

В зависимости от химической природы металла, строения его металлической решетки скорость образования окисных пленок может быть различной. Возьмем, например, натрий, который легко режется ножом и имеет температуру плавления 97,7° С. Разрезав его, мы обнаружим блестящую поверхность, которая будет буквально на глазах тускнеть. Через одни-двое суток на поверхности разреза образуется пленка, состоящая из окислов натрия, а также из углекислого натрия — продуктов соединения натрия и воды, находящейся в воздухе, с двуокисью углерода. Эта пленка не предохраняет поверхность натрия от воздействия на него среды. И если оставить натрий на воздухе, то через некоторое время он превратится в подобного рода химическое соединение металлический натрий быстро разрушится. Поэтому его хранят под слоем керосина.

Таким образом, окисные пленки различны: одни из них образуют на поверхности металла прочную защиту другие же — рыхлые, непрочные и не защищают его поверхность от дальнейшего разрушения.

Поэтому естественно, что ученые задались целью изучить образующиеся пленки. В результате различных методов, которые применялись для их изучения, было установлено, что все пленки по толщине можно разделить на три группы:

на невидимые, которые можно обнаружить только специальными методами, толщина их не более 400 Å (ангстрем);

пленки, дающие цвета побежалости, толщиной от 400 до 5000 Å;

видимые пленки, толщина которых более 5000 Å.

Невидимые пленки трудно обнаружить. Ученым Тронстадом был разработан очень интересный метод, который позволил распознавать и даже измерять чрезвычайно тонкие пленки. Этот метод по своей идее прост — он состоит в исследовании изменений, которые претерпевает луч падающего света на поверхность металла, имеющего пленку.

Для иллюстрации метода исследования тонких пленок проделаем следующий опыт. Поверхность металлической пластинки тщательно очистим тонкой наждачной бумагой и, взяв такую пластинку деревянной держалкой, будем нагревать ее с одного конца на газовой или спиртовой горелке до температуры 250— 300° С (рис. 9). Постепенно на поверхности металла появятся так называемые цвета побежалости, т. е. поверхность пластинки окажется окрашенной во все цвета радуги. Появление такого рода окраски объясняется возникновением на металле пленок различной толщины.

Строение металлов. Часть 2.

Рис.9. Образование цветов побежалости.

Почему же наличие тонких пленок приводит к такой причудливой окраске металлической поверхности? Чем объяснить появление цветов побежалости?

Исследование показало, что цвета побежалости представляют оптической явление, не связанное с окраской поверхности металла. Чтобы понять это, рассмотрим рис. 10. На этом рисунке схематически изображена поверхность металла с образовавшейся на ней пленкой окислов (Б-А). Свет падающий на металл, частично отражается от ее поверхности, а частично проходит через пленку и отражается от поверхности металла. Вам известно, что лучи видимого света представляют собой волны той или иной длины. При определенном соотношении между толщиной пленки и длиной волны падающего луча оба отраженных луча от пленки и металла, сложившись, могут погасить друг друга, в результате чего часть лучей определенного цвета в отраженном луче будет сильно ослаблена, поэтому пленка покажется нам окрашенной в один из дополнительных цветов. Когда толщина пленки достигнет определенной величины, цвета побежалости исчезают: пленка становится малопрозрачной и полностью поглощает лучи света.

Рис. 10. Метод определения окисных пленок.

Было замечено, что цвета побежалости зависят не только от толщины пленки, но и от металла, на котором она образовалась. Была составлена специальная таблица, которая дает возможность по цветам побежалости приблизительно определять и толщину пленок. Очень тонкие пленки не дают цветов побежалости, и поэтому они долгое время не поддавались изучению. В настоящее время разработаны методы, позволяющие изучать и эти чрезвычайно тонкие пленки.

Как влияют пленки на защитные свойства металлов, можно обнаружить простым методом. Возьмем железную пластинку, путем нагревания получим на ней цвета побежалости. Будем на каждую зону, окрашенную в один цвет наносить каплю разбавленного раствора медного купороса. Нанесем сначала каплю на поверхность металла где нет цветов побежалости, т. е. не образовалось видимых окисных пленок. Под каплей на металле сейчас же обнаружим покраснение, указывающее на образование меди на этом участке. Эта реакция Вам известна. Так, если опустить в раствор медного купороса железный гвоздь или пластинку, то уже через несколько минут поверхность металла покроется красноватым налетом меди. Здесь происходит реакция, которую можно записать уравнением:

CuSO4+Fe→Cu+FeSO4

То же самое получается и при нанесении капли медного купороса на поверхность железной пластинки. Капля тотчас же вызывает появление пятна на поверхности незащищенного металла. Несколько медленнее происходит его появление на желтой окраске, и пятно долго не возникает на серо-зеленой поверхности. Это указывает на то, что пленки обладают различными защитными свойствами в зависимости от их толщины.

Какая кристаллическая решетка у алмаза и в чем ее уникальность

Кристаллической решеткой алмаза ученые заинтересовались давно. Благодаря ее характеристикам, камень имеет особые свойства и ценность. Существуют аллотропные модификации, используемые в промышленности, электронике, медицине, космонавтике, авиации. В настоящее время развивается отрасль по созданию искусственных алмазов, но она требует больших затрат.

Строение кристалла и способ образования

Камень алмаз – кубическая аллотропная форма углерода, шестого элемента таблицы Менделеева. Образуется после сверхбыстрого охлаждения под действием сильного давления. Добывается в кимберлитовых трубках – вертикальных образованиях, возникших при прорыве магмы сквозь кору земли.

Под фразой «кристаллическая решетка алмаза» понимают пространственное расположение и соединения атомов углерода, обусловливающие твердость минерала.

По сути алмаз – это модификация углерода.

К какому типу относится кристаллическая решетка алмаза

Минерал имеет атомную кристаллическую решетку, т. е. в узлах расположены атомы углероды.

Читать еще:  Бензиновая горелка своими руками

Особенности строения кристаллической решетки алмаза обусловливают его прочность, т. к. каждый атом находится в центре тетраэдра (треугольная или трехгранная пирамида) и связан ковалентными связями. При этом каждый атом плотно связан с четырьмя соседними атомами.

Для алмаза характерна кубическая сингония, т. е. элементарная ячейка представлена в форме куба.

Строение кристаллической решетки алмаза:

  • по одному атому углерода – на вершинах куба;
  • по одному атому – в каждой грани;
  • четыре атома – внутри куба.

Атомы, расположенные в центре граней – общие для двух ячеек. Атомы, расположенные на вершинах – общие для восьми ячеек. Между собой они соединены наиболее прочным подвидом ковалентной связи – сигма-связью.

Всего химики выделяют 4 типа связи атомов между собой:

  • ионная;
  • металлическая;
  • водородная;
  • ковалентная.

Последний тип связи, формирующий кристаллическую решетку у алмаза, считается самым прочным.

Не все алмазы состоят исключительно из углерода. Иногда в составе встречаются посторонние примеси (кальций, алюминий, бор, магний, кремний, гранит, газы). Если примеси расположены поверхностно, то их можно удалить при огранке. Если же внутри камня, то такие алмазы не представляют ювелирной ценности и используются в промышленности.

Пример кристаллической решетки камня в видео:

Физические и химические свойства

Химическая формула минерала – C. Кристалл хорошо проводит тепло, но не проводит (или слабо проводит) электрический ток. Имеет хорошие преломляющие и отражающие свойства.

Плавится при температуре свыше 3700 градусов. Горит в сочетании с кислородом при температуре более 721 градуса. Устойчив к кислотам и щелочам.

  1. Цвет: бесцветный, прозрачный. Возможны оттенки голубого, желтого, синего, розового, красного, бурого, черного.
  2. Форма: кристалл с разным количеством граней.
  3. Блеск: сильный алмазный.
  4. Плотность: 3,5 г/см3.
  5. Твердость: абсолютная, 10 баллов. Но при этом камень очень хрупкий.
  6. Спайность: средняя.
  7. Электропроводность: слабая или отсутствует.
  8. Люминесцирует при ультрафиолете.
  9. Под действием рентгеновского излучения снижается прочность связей.

Аллотропные модификации

Некоторые другие химические элементы имеют схожую с алмазом структуру, но несколько отличную молекулярную кристаллическую решетку. Различие – в расположении атомов.

У алмаза атомы углерода располагаются близко друг другу. А у других элементов с большей атомной массой – расстояние между атомами больше, что снижает их прочность.

Из аллотропных модификаций известны:

  1. Лонсдейлиты – недостаточно изучены, добываются из метеоритов или создаются искусственно, имеют гексагональную кристаллическую решетку.
  2. Графит – имеет похожее строение, но отличается пи-связями и наличием свободных электронов (гексагональная кристаллическая решетка).
  3. Уголь – используется как сырье для получения тепла.
  4. Карбин – мелкие черные кристаллы в форме порошка, искусственно созданные.
  5. Фуллерены – кристаллическая решетка выглядит в виде мяча, собранного из восьмиугольников, искусственно созданные.
  6. Углеродные нанотрубки – используются как каркас к наноизделиям.

Аллотропные модификации способны к трансформации: под действием температуры 1800 градусов они преобразуются в графит.

Дополнительно смотрите видеоматериал об аллотропных формах углерода — алмазе и графите:

Способы применения вещества

Обработанные и ограненные камни высокого качества – бриллианты с идеальной кристаллической решеткой и составом (без примесей и дефектов) – используют для производства ювелирных украшений. Это наиболее прибыльная сфера применения минерала.

Дефектные камни идут на другие нужды:

  • производство подшипников, сверл;
  • использование в электронике и телекоммуникациях;
  • изготовление механизмов из алмазного порошка;
  • обрамление шлифовочных кругов;
  • создание оптических линз;
  • использование в качестве абразивов;
  • создание квантовых компьютеров;
  • применение в ядерной энергетике;
  • изготовление медицинского инструментария.

Получение искусственных минералов

В настоящее время разработаны методики получения алмаза из графита.

По HPHT методу, формирование искусственного камня достигается воздействием 3000-градусной температуры при давлении более 1000 Па и добавлением металлов. Это приводит к изменению ковалентных связей в кристаллической решетке и образованию пористых мутных камней.

Но считается, что лучший способ получения искусственных самоцветов – это выращивание при температуре 1500 градусов. Но это затратный метод, как и создание алмазов с помощью ультразвука. Поэтому принято получать камни из паров метана. Метод основан на пленочном осаждении графита.

Технологии неуклонно развиваются, и возможно в скором будущем, ученые научатся синтезировать искусственные алмазы при минимальных затратах.

Может быть, вам известны еще какие-то особенности строения или получения алмазов? Поделитесь своими знаниями в комментариях. Делайте репост в соцсети.

1.Кристаллическое строение металлов. Типы кристаллических решёток.

Все тела состоят из атомов. Тела, в кото­рых атомы расположены беспорядочно, называютаморф­ными(стекло, канифоль, воск, смола и др.).Кристалли­ческие тела(все металлы и метал­лические сплавы), характеризуются упорядоченным рас­положением атомов. В металлах и металлических спла­вах атомы находятся в узлах пространственных кристал­лических решеток.

В процессе кристаллизации металлов и сплавов могут образовываться кристаллические решетки разного типа. Наиболее распространенными являются объемно-центрированная кубическая (рис.1, а) (К,V, Сr,Fеа, Мо,W), гранецентрированная кубическая (рис.1, б) (Аl,Fe, Ni, Сu, Аg, Аu, Рb) и гексагональная решетки(рис.1, а) (Ве, Мg, Со,Zn, Тi). Гранецентрированная кубическая и гексагональная решетки характеризуются наиболее плотной упаковкой атомов и их компактным размещением.

Расстояния между соседними атомами в кристаллической решетке (параметр решётки) Рис.1

исключительно малы. Для их измерения пользуются особой единицей — ангстремом (А°), который ра­вен 1А°=10 -8 см, или наномет­ром (1 нм=10 -9 см).

2. Аллотропические превращения в металлах.

Некоторые металлы в твердом состоянии (железо, марганец, кобальт и др.) в зависимости от температуры нагрева могут иметь кристаллические решетки различ­ного строения и, следовательно, обладать различными свойствами. Это явление называется аллотропией, илиполиморфизмом.Кроме того, известен полиморфизм под влиянием температуры и давления. При нагреве до 2000 °С и давлении

10 10 Па углерод в форме графита перекристаллизовывается в алмаз.

Аллотропические формы принято обо­значать буквами греческого алфавита: альфа, бета, гамма и т. д.

К металлам, не претерпевающим аллотропических превращений в твердом состоянии при нагревании и охлаждении, относятся алюминий, магний, медь и др. Большое число технически важных металлов (олово, цинк, никель, кобальт и др.) подвержено аллотропиче­ским изменениям.

3. Процесс кристаллизации. Дефекты кристаллического строения.

Кристаллизациейназывается образование кристаллов в металлах и сплавах при переходе из жидкого состояния в твёрдое (первичная кристаллизация), а также перекристаллизация в твёрдом состоянии (вторичная кристаллизация).

Про­цесс кристаллизации металла складывается из двух эле­ментарных процессов: образования центров кристалли­зации (зародышей) и роста кристаллов из этих центров. При температуре кристаллизации в жидком металле сначала образуются центры кристаллизации, причем их роль играют разные примеси, мельчайшие шлаковые и неметаллические включения. После образования заро­дышей атомы жидкого металла, расположенные беспо­рядочно, начинают располагаться вокруг этих зароды­шей и образуют кристаллы правильной геометрической формы. Так как кристаллизация начинается одновремен­но во многих местах и рост кристаллов идет по всем направлениям, то смежные кристаллы, сталкиваясь меж­ду собой, мешают свободному росту каждого. Это при­водит к тому, что кристаллы приобретают неправильную внешнюю форму, несмотря на их упорядоченное внутрен­нее строение. Кристаллы неправильной формы принято называть кристаллитами, полиэдрами, или зернами. Образовавшиеся реальные кристаллы имеют те или иные несовершенства (дефекты) кристал­лического строения, которые принято классифицировать по характеру их измерения в пространстве на точечные (нульмерные), линейные (одномерные),

Рис. 2. Точечные дефекты в кристаллической решетке:

а — вакансия; б — межузельный атом; в — примесный атом внедрения

поверхностные (двухмерные), объемные (трехмерные).

Наиболее распространены точечные. К ним относят вакансии(узлы в кри­сталлической решетке, свободные от атомов),межузельные атомы (атомы, находящиеся вне узлов кристалличе­ской решетки), а такжепримесные атомы(рис.2).

Кристаллическое строение металлов. Типы кристаллических решёток.

1. Большое число различных металлов, кото­рые применяют в технике, можно разделить на черные и цветные.

Черные металлы имеют темно-серый цвет, большую плотность, высокую температуру плавления, относитель­но высокую твердость и во многих случаях обладают по­лиморфизмом.

Цветные металлы имеют красную, желтую, белую окраску; обладают большой пластичностью, малой твердостью, относительно низкой температурой плавления; для них характерно отсутст­вие полиморфизма.

К черным металлам относят железо и его сплавы, к цветным – все остальные металлы и их сплавы.

В зависимости от содер­жания углерода чёрные сплавы делят на стали и чугуны.

Сталями называют сплавы железа с углеродом, в которых углерода содержится до 2,14%, а чугунами – свыше 2,14%.

Цветные металлы подразделяют на тяжелые (медь, свинец, олово, никель и др.), легкие (алюминий, магний и др.), редкие (молибден, вольфрам, ванадий и др.) и благородные (золото, платина, серебро).

2.Все тела состоят из атомов. Тела, в кото­рых атомы расположены беспорядочно, называют аморф­ными (стекло, канифоль, воск, смола и др.). Кристалли­ческие тела (все металлы и метал­лические сплавы), характеризуются упорядоченным рас­положением атомов. В металлах и металлических спла­вах атомы находятся в узлах пространственных кристал­лических решеток.

В процессе кристаллизации металлов и сплавов могут образовываться кристаллические решетки разного типа. Наиболее распространенными являютсяобъемно- центрированная кубическая (К, V, Сr, Fеα, Мо, W), гранецентрированная кубическая (Аl, Feγ, Ni, Сu, Аg, Аu, Рb) и гексагональная решетки (Ве, Мg, Со, Zn,Тi). Гранецентрированная кубическая и гексагональная решетки характеризуются наиболее плотной упаковкой атомов и их компактным размещением (рис.1).

Расстояния между соседними атомами в кристаллической решетке (параметр решётки) исключительно малы. Для их измерения пользуются особой единицей – ангстремом (А°), который ра­вен 1А° = 10 -8 см, или наномет­ром (1 нм = 10-9 см).

Рис. 1. Расположение атомов в крис­таллических решетках:

а – объемно-центрированная кубическая; б – гранецентрированная кубическая; в – гексагональная

3.Некоторые металлы в твердом состоянии (железо, марганец, кобальт и др.) в зависимости от температуры нагрева могут иметь кристаллические решетки различ­ного строения и, следовательно, обладать различными свойствами. Это явление называется аллотропией, или полиморфизмом. Кроме того, известен полиморфизм под влиянием температуры и давления. При нагреве до 2000 °С и давлении

10 10 Па углерод в форме графита перекристаллизовывается в алмаз.

Аллотропические формы принято обо­значать буквами греческого алфавита: альфа, бета, гамма и т. д.

К металлам, не претерпевающим аллотропических превращений в твердом состоянии при нагревании и охлаждении, относятся алюминий, магний, медь и др. Большое число технически важных металлов (олово, цинк, никель, кобальт и др.) подвержено аллотропиче­ским изменениям.

4.Кристаллизацией называется образование кристаллов в металлах и сплавах при переходе из жидкого состояния в твёрдое (первичная кристаллизация), а также перекристаллизация в твёрдом состоянии (вторичная кристаллизация).

Про­цесс кристаллизации металла складывается из двух эле­ментарных процессов: образования центров кристалли­зации (зародышей) и роста кристаллов из этих центров. При температуре кристаллизации в жидком металле сначала образуются центры кристаллизации, причем их роль играют разные примеси, мельчайшие шлаковые и неметаллические включения. После образования заро­дышей атомы жидкого металла, расположенные беспо­рядочно, начинают располагаться вокруг этих зароды­шей и образуют кристаллы правильной геометрической формы. Так как кристаллизация начинается одновремен­но во многих местах и рост кристаллов идет по всем направлениям, то смежные кристаллы, сталкиваясь меж­ду собой, мешают свободному росту каждого. Это при­водит к тому, что кристаллы приобретают неправильную внешнюю форму, несмотря на их упорядоченное внутрен­нее строение. Кристаллы неправильной формы принято называть кристаллитами, полиэдрами, или зернами. Образовавшиеся реальные кристаллы имеют те или иные несовершенства (дефекты) кристал­лического строения, которые принято классифицировать по характеру их измерения в пространстве на точечные (нульмерные), линейные (одномерные), поверхностные (двухмерные), объемные (трехмерные).

Наиболее распространены точечные. К ним относят вакансии (узлы в кри­сталлической решетке, свободные от атомов), межузельные атомы (атомы, находящиеся вне узлов кристалличе­ской решетки), а также примесные атомы, (рис.2).

Рис. 2. Точечные дефекты в кристаллической решетке:

Кристаллическое строение металлов

Общее строение

Металлы – твёрдые вещества, имеющие кристаллическое строение. Исключение составляет ртуть – жидкий металл. Кристаллические решётки представляют собой упорядоченные определённым образом атомы металла. Каждый атом состоит из положительно заряженного ядра и нескольких отрицательно заряженных электронов. В атомах металлов недостаточно электронов, поэтому они являются ионами.

Единица кристаллической решётки – элементарная кристаллическая ячейка, в условных узлах и на гранях которой находятся положительно заряженные ионы. Их удерживают вместе металлические связи, возникающие за счёт беспорядочного движения отделившихся от атомов электронов (благодаря чему атомы превратились в ионы).

Рис. 1. Схема металлической связи.

Свободное движение электронов обусловливает электро- и теплопроводность металлов.

Виды решёток

Элементарные кристаллические ячейки могут иметь различную конфигурацию. В связи с этим выделяют три типа кристаллических решёток:

  • объемно-центрированная (ОЦК) кубическая – состоит из 9 ионов;
  • гранецентрированная (ГЦК) кубическая – включает 14 ионов;
  • гексагональная плотноупакованная (ГПУ) – состоит из 17 ионов.

ОЦК представляет собой куб, в узлах которого находится по атому. В центре куба, на пересечении диагоналей располагается девятый ион. Этот тип характерен для железа, молибдена, хрома, вольфрама, ванадия.

Элементарной кристаллической ячейкой типа ГЦК является куб с ионами в узлах и в середине каждой грани – на пересечении диагоналей. Такое строение имеют медь, серебро, алюминий, свинец, никель.

Третий тип имеет вид гексагональной призмы, в узлах которой находится по шесть ионов с каждой стороны. Посередине между шестью узлами располагается по одному иону. В середине призмы между шестиугольными гранями находится равносторонний треугольник, который составляют три иона.

Рис. 2. Типы решёток.

Металл может содержать большое количество дефектов атомного строения. Дефекты влияют на свойства металла.

Характеристика решётки

Кристаллические решётки характеризуются компактностью или степенью наполненности. Компактность определяют показатели:

  • параметр решётки – расстояние между атомами;
  • число атомов;
  • координационное число – количество соседних ячеек;
  • плотность упаковки – отношение объёма, занимаемого атомами, к полному объёму решётки.

При подсчёте количества атомов следует помнить, что атомы в узлах и на гранях входят в состав соседних ячеек.

Рис. 3. Кристаллические ячейки составляют решётку.

Что мы узнали?

Узнали кратко об атомно-кристаллическом строении металлов. Металлы – твёрдые кристаллические вещества. Единицей решётки является элементарная кристаллическая ячейка. Благодаря металлическим связям ионы в узлах ячеек удерживаются на одинаковом расстоянии. Различают три типа кристаллических решёток – ОЦК, ГЦК и ГПУ, отличающихся количеством атомов и геометрической формой.

Кристаллические решетки в химии

Содержание:

Определение кристаллической решетки

Как мы знаем, все материальные вещества могут пребывать в трех базовых состояниях: жидком, твердом, и газообразном. Правда есть еще состояние плазмы, которое ученые считают ни много ни мало четвертым состоянием вещества, но наша статья не о плазме. Твердое состояние вещества потому твердое, так как имеет особую кристаллическую структуру, частицы которой находятся в определенном и четко заданном порядке, создавая, таким образом, кристаллическую решетку. Строение кристаллической решетки состоит из повторяющихся одинаковых элементарных ячеек: атомов, молекул, ионов, других элементарных частиц, связанных между собой различными узлами.

Виды кристаллических решеток

В зависимости от частиц кристаллической решетки существует четырнадцать типов оной, приведем наиболее популярные из них:

  • Ионная кристаллическая решетка.
  • Атомная кристаллическая решетка.
  • Молекулярная кристаллическая решетка.
  • Металлическая кристаллическая решетка.

Далее более подробно опишем все типы кристаллической решетки.

Ионная кристаллическая решетка

Главной особенностью строения кристаллической решетки ионов являются противоположные электрические заряды, собственно, ионов, вследствие чего образуется электромагнитное поле, определяющее свойства веществ, имеющих ионную кристаллическую решетку. А это тугоплавкость, твердость, плотность и возможность проводить электрический ток. Характерным примером ионной кристаллической решетки может быть поваренная соль.

Атомная кристаллическая решетка

Вещества с атомной кристаллической решеткой, как правило, имеют в своих узлах, состоящих собственно из атомов сильные ковалентные связи. Ковалентная связь происходит, когда два одинаковых атома делятся друг с другом по-братски электронами, образуя, таким образом, общую пару электронов для соседних атомов. Из-за этого ковалентные связи сильно и равномерно связывают атомы в строгом порядке – пожалуй, это самая характерная черта строения атомной кристаллической решетки. Химические элементы с подобными связями могут похвастаться своей твердостью, высокой температурой плавления. Атомную кристаллическую решетку имеют такие химические элементы как алмаз, кремний, германий, бор.

Молекулярная кристаллическая решетка

Молекулярный тип кристаллической решетки характеризуется наличием устойчивых и плотноупакованных молекул. Они располагаются в узлах кристаллической решетки. В этих узлах они удерживаются такими себе вандервальсовыми силами, которые в десять раз слабее сил ионного взаимодействия. Ярким примером молекулярной кристаллической решетки является лед – твердое вещество, имеющее однако свойство переходить в жидкое – связи между молекулами кристаллической решетки совсем слабенькие.

Металлическая кристаллическая решетка

Тип связи металлической кристаллической решетки гибче и пластичнее ионной, хотя внешне они весьма похожи. Отличительной особенностью ее является наличие положительно заряженных катионов (ионов метала) в узлах решетки. Между узлами живут электроны, участвующие в создании электрического поля, эти электроны еще называются электрическим газом. Наличие такой структуры металлической кристаллической решетки объясняет ее свойства: механическую прочность, тепло и электропроводность, плавкость.

Кристаллические решетки, видео

И в завершение подробное видео пояснения о свойствах кристаллических решеток.

Автор: Павел Чайка, главный редактор журнала Познавайка

При написании статьи старался сделать ее максимально интересной, полезной и качественной. Буду благодарен за любую обратную связь и конструктивную критику в виде комментариев к статье. Также Ваше пожелание/вопрос/предложение можете написать на мою почту pavelchaika1983@gmail.com или в Фейсбук, с уважением автор.

Эта статья доступна на английском – Crystal Lattice in Chemistry.

Урок 15 Бесплатно Кристаллическое состояние веществ

Понятие о кристаллической структуре

Вы уже знакомы с разным агрегатным состоянием веществ: газообразным, жидким, твердым, а также переходами их из одного состояния в другое.

Читать еще:  Как сделать штукатурку цоколя под камень своими руками

В твердом состоянии большинство веществ имеют кристаллическую структуру.

Для них характерна плотная упаковка их частиц в кристалле, эти частицы упорядочены.

Структура кристаллов разнообразна, но все они геометрически правильной формы.

Например, кристаллы поваренной соли имеют форму куба, горного хрусталя – форму тетраэдра, калийной селитры – призмы.

При определённых условиях из таких веществ можно получить монокристалл. Это кристалл гораздо большего размера, чем мы привыкли видеть, и самое главное, он представляет собой не множество кристаллов, спрессованных в один объём (такой кристалл называют «поликристаллом»), а тело с непрерывной кристаллической решёткой.

Кристаллами называют твердые тела с закономерным расположением в них частиц: атомов, молекул, ионов.

Внутреннее строение кристаллов характеризует их кристаллическая решетка – взаимное расположение атомов.

Кристаллическая решетка – это модель кристалла, его внутренний каркас.

Пересекающиеся прямые линии обозначают грани кристалла, а точки их пересечения – центры частиц, которые называются узлами кристаллической решетки.

В узлах расположены атомы, молекулы или ионы, стянутые в кристалл химическими связями.

Силы притяжения частиц в кристалле характеризуют энергию кристаллической решетки (обычно её измеряют в кДж/моль).

Любая кристаллическая решетка построена из повторяющихся одинаковых структурных единиц, индивидуальных для каждого кристалла.

Таковые называются элементарными ячейками.

Например, в кристалле хлорида натрия каждый ион окружен шестью ионами противоположного знака.

Элементарная ячейка – это предел делимости кристалла, наименьший его объем, при котором он сохраняет форму и свойства.

Пройти тест и получить оценку можно после входа или регистрации

Типы кристаллических решеток

Кристаллические решётки бывают:

  • молекулярные
  • атомные (атомно- ковалентные)
  • ионные
  • металлические (атомно- металлические)

Остановимся на характеристике основных типов кристаллических решеток и установим зависимость от них свойств веществ.

Молекулярные кристаллические решетки– это решетки, в узлах которых расположены молекулы, связанные между собой слабыми силами межмолекулярного взаимодействия.

Примером вещества с молекулярной кристаллической решеткой может служить кристаллический оксид углерода (IV) CO2 – «сухой лед».

С помощь сухого льда кулинары делают забавные представления, ведь он совершенно безопасен для здоровья!

Рассмотрим модель его кристаллической решетки.

В ее узлах находятся молекулы.

Многие вещества в твердом состоянии имеют молекулярную кристаллическую решетку, особенно органические (например, белки, углеводы, полимеры).

Атомы в их молекулах связаны прочными ковалентными связями.

Молекулы же в кристаллах стянуты слабыми межмолекулярными силами, которые легко разорвать.

Поэтому кристаллы с молекулярной решеткой обладают малой твердостью, легкоплавкие, летучие.

Молекулярные вещества легко переходят из одного агрегатного состояния в другое.

Примером может служить сублимация йода.

Сублимация – возгонка, переход из твердого состояния не в жидкое, а сразу в газообразное.

Йод – это твёрдый (при нормальных условиях) неметалл темно-фиолетового цвета.

При нагревании йод не плавится, а возгоняется: сразу переходит в газообразное состояние.

У меня есть дополнительная информация к этой части урока!

Тот же эффект можно наблюдать и с сухим льдом. Если положить на стол кусочек сухого льда, то он не плавится, а сразу же испаряется (то есть переходит в газообразное состояние).

Интересно то, что он при этом начинает бегать по поверхности. Происходит это потому, что между кристаллом и столом образуется слой углекислого газа, который и толкает этот кристалл в разные стороны.

Если ненадолго взять его в руку, мы почувствуем небольшой холод, но жидкости не будет. Именно поэтому это вещество и назвали «сухой лёд».

Однако получить эти вещества в жидком виде всё же возможно. Эти жидкости существуют при повышенном давлении. Хотя термин «повышенное давление» в данном случае понятие весьма растяжимое и вовсе не означает большущие гидравлические прессы размером со шкаф. Например, жидкий йод можно легко получить в пробирке, нагревая его кристаллы, но при этом охлаждая горлышко пробирки. В таком случае пары йода не будут выходить из пробирки, а будут опять оседать на ней в виде кристаллов, и в итоге в пробирке образуется повышенное давление паров йода.

Атомные кристаллические решетки – решетки, в которых расположены атомы, стянутые в кристалле прочными ковалентными связями.

Атомных кристаллов сравнительно немного.

Примерами таких твердых веществ служат как простые вещества: алмаз, кремний; так и сложные вещества: карбид кальция, сульфид цинка, диоксид кремния и др.

Так, например, кристалл алмаза имеет форму тетраэдра.

Следовательно, структурную его единицу представляет тетраэдр.

В центре его ячейки расположен атом углерода, прочно связанный с четырьмя другими атомами углерода с помощью электронных пар.

Все связи одинаковы, как и углы, образующиеся между атомами.

Именно благодаря ковалентным связям атомные кристаллы имеют высокую твёрдость и температуру плавления.

Именно тот факт, что в алмазе каждый атом связан четырьмя ковалентными связями, и объясняет столь высокую его твёрдость.

Ионные кристаллические решетки – это решетки, в узлах которых расположены ионы с противоположными зарядами.

Связь между ионами осуществляется за счет электростатических сил притяжения.

Типичный представитель веществ с такой решеткой – поваренная соль (схематичное изображение решетки поваренной соли есть выше в этом уроке).

Ионные кристаллические решетки характерны для многих соединений с ионной связью. Это соли щелочных и щелочно-земельных металлов, щёлочи.

Ионные кристаллы отличаются высокой твердостью и температурой плавления, малой летучестью. По физическим свойствам они сходны с атомными кристаллами.

Металлические кристаллические решетки присущи простым веществам – металлам. Подробно они будут рассмотрены позже.

Многие простые и сложные вещества имеют кристаллическую структуру.

Для них характерны закономерное расположение частиц в трехмерном пространстве и строгая правильная геометрическая форма кристаллов. Свойства таких веществ зависят не только от строения образующих их атомов и характера их химической связи, но и от кристаллической структуры веществ.

Определить тип кристаллической решетки вещества поможет таблица:

Тип кристаллической решетки

Свойства веществ с этим типом кристаллической решетки

1, 2, 3 гр главных п/г

не 1, 2, 3 гр главных п/г

С (алмаз и графит)

Р (черный фосфор)

Атомная

Твердые, тугоплавкие, нерастворимые или слаборастворимые.

Диэлектрики или полупроводники

Металлическая

Твердые, пластичные, нерастворимые.

Молекулярная

Непрочные, летучие, жидкие и твердые, растворимые в большинстве.

Атомная

Твердые, тугоплавкие, нерастворимые или слаборастворимые.

Диэлектрики или полупроводники

Ионная

Твердые, тугоплавкие, растворимые.

Проводники или полупроводники

  1. Если вещество состоит из одного металла, то решетка металлическая.
  2. Если в составе вещества нет металла, либо оно органическое, то решетка молекулярная. Исключение составляют С (алмаз и графит) и Р (черный фосфор), имеющие атомную решетку.
  3. Если в составе вещества есть металл 1, 2, 3 групп главных подгрупп, то решетка ионная.
  4. Если в составе вещества есть металл не из 1, 2, 3 групп главных подгрупп, то решетка атомная. Так же атомную решетку имеют простые вещества С (алмаз и графит) и Р (черный фосфор).

Исходя из сказанного выше составим обобщающую таблицу:

Металлическая

Атомная

Ионная

Молекулярная

Состав узла решетки

Атом металла и электрон

Атомы, связанные ковалентной полярной и неполярной связью

Тип кристаллической решетки железа

Определение кристаллической решетки

Как мы знаем, все материальные вещества могут пребывать в трех базовых состояниях: жидком, твердом, и газообразном. Правда есть еще состояние плазмы, которое ученые считают ни много ни мало четвертым состоянием вещества, но наша статья не о плазме. Твердое состояние вещества потому твердое, так как имеет особую кристаллическую структуру, частицы которой находятся в определенном и четко заданном порядке, создавая, таким образом, кристаллическую решетку. Строение кристаллической решетки состоит из повторяющихся одинаковых элементарных ячеек: атомов, молекул, ионов, других элементарных частиц, связанных между собой различными узлами.

Объемно-центрированная решетка

Строение кристаллической решетки металлов данного типа представляет собой следующую структуру. Это куб, в узлах которого находится восемь атомов. Еще один располагается в центре свободного внутреннего пространства ячейки, что и объясняет название «объемно-центрированная».

Это один из вариантов наиболее простого строения элементарной ячейки, а значит, и всей решетки в целом. Такой тип имеют следующие металлы:

  • молибден;
  • ванадий;
  • хром;
  • марганец;
  • альфа-железо;
  • бетта-железо и другие.

Основные свойства таких представителей — высокая степень ковкости и пластичности, твердость и прочность.

Виды кристаллических решеток

В зависимости от частиц кристаллической решетки существует четырнадцать типов оной, приведем наиболее популярные из них:

  • Ионная кристаллическая решетка.
  • Атомная кристаллическая решетка.
  • Молекулярная кристаллическая решетка.

    Металлическаякристаллическая решетка.
    Далее более подробно опишем все типы кристаллической решетки.

    Атомно — кристаллическое строение металлов

    Внутреннее строение металлов и их характеристики определяют их физико-химические свойства. Электроны на внешних орбитах атомов слабо связаны с ядром и имеют отрицательный заряд. При наличии разницы потенциалов электроны мигрируют к положительному полюсу, создавая электрический ток. Это физическое явление обуславливает электропроводность.

    Кристаллическое строение свойственно металлам и их сплавам в твердом фазовом состоянии. Атомы выстраиваются в определенную объемную структуру, называемую кристаллической решеткой. Число атомов в вершинах и на гранях этой структуры, а также дистанция между ними определяют такие физические свойства металла, как электро- и теплопроводность, вязкость, текучесть и т.д. Кристаллическое строение металлов и сплавов может быть двух типов:

    • Межатомная дистанция одинакова по всем направлениям. Это так называемое изотропное строение. При этом физические свойства кристалла также одинаковы по всем направлениям.
    • Межатомное расстояние по горизонтали и по вертикали разное. Такой кристалл называют анизотропным, и его физические параметры меняются в зависимости от направления.

    Атомно-кристаллическое строение металлов

    В реальном куске металлов, составленному из множества изолированных кристаллических фрагментов, атомно кристаллическое строение принадлежит к третьему типу — квазиизотропному. В среднем свойства такого куска близки к изотропным. При выстраивании кристаллической решетки некоторые атомы не попадают на свое место, смещаются или теряются. В этом случае говорят о дефектах кристаллического строения металлов. Дефекты структуры отрицательно влияют на свойства изделия, особенно если оно должно быть монокристаллом, как, например, в электронике, лазерной технике и других отраслях высоких технологий.

    Атомная кристаллическая решетка

    Вещества с атомной кристаллической решеткой, как правило, имеют в своих узлах, состоящих собственно из атомов сильные ковалентные связи. Ковалентная связь происходит, когда два одинаковых атома делятся друг с другом по-братски электронами, образуя, таким образом, общую пару электронов для соседних атомов. Из-за этого ковалентные связи сильно и равномерно связывают атомы в строгом порядке – пожалуй, это самая характерная черта строения атомной кристаллической решетки. Химические элементы с подобными связями могут похвастаться своей твердостью, высокой температурой плавления. Атомную кристаллическую решетку имеют такие химические элементы как алмаз, кремний, германий, бор.

    Типы кристаллических решеток

    Дистанцию соседними атомами называют параметром решетки, у разных металлов он составляет 2 — 6 ангстрем. Существуют три основных типа кристаллических решеток:

    • Кубическая: объемно-центрированная — включает в себя девять атомов. Свойственна железу, хрому, молибдену, и ванадию.
    • Кубическая гранецентрированная: включает в себя уже 14 атомов. Присуща меди, золоту, свинцу, алюминию.
    • Гексагональная: атомов уже 17 и размещены они наиболее плотно. Так кристаллизуются магний, цинк кадмий и другие.

    Уникальная возможность железа заключается в том, что до 910°С оно имеет кубическую объемно-центрированную структуру, а при нагреве свыше этой температуры переходит к гранецентрированной.

    Металлическая кристаллическая решетка

    Тип связи металлической кристаллической решетки гибче и пластичнее ионной, хотя внешне они весьма похожи. Отличительной особенностью ее является наличие положительно заряженных катионов (ионов метала) в узлах решетки. Между узлами живут электроны, участвующие в создании электрического поля, эти электроны еще называются электрическим газом. Наличие такой структуры металлической кристаллической решетки объясняет ее свойства: механическую прочность, тепло и электропроводность, плавкость.

    Атомная кристаллическая решётка

    В узлах находятся атомы, о чём и говорит название. Эти вещества очень крепкие и прочные, так как между частицами образуется ковалентная связь. Соседние атомы образуют между собой общую пару электронов (а, точнее, их электронные облака наслаиваются друг на друга), и поэтому они очень хорошо связаны друг с другом. Самый наглядные пример – алмаз, который по шкале Мооса обладит наибольшей твёрдостью. Интересно, что алмаз, как и графит, состоит из углевода. Графит является очень хрупким веществом (твёрдость по шкале Мооса – 1), что является наглядным примером того, как много зависит от вида.

    Атомная кр. решётка плохо распространена в природе, к ней относятся: кварц, бор, песок, кремний, оксид кремния (IV), германий, горный хрусталь. Для этих веществ характерна высокая температура плавления, прочность, а также эти соединения очень твёрдые и нерастворимые в воде. Из-за очень сильной связи между атомами, эти химические соединения почти не взаимодействуют с другими и очень плохо проводят ток.

    Кристаллические решетки, видео

    И в завершение подробное видео пояснения о свойствах кристаллических решеток.

    Автор: Павел Чайка, главный редактор журнала Познавайка

    При написании статьи старался сделать ее максимально интересной, полезной и качественной. Буду благодарен за любую обратную связь и конструктивную критику в виде комментариев к статье. Также Ваше пожелание/вопрос/предложение можете написать на мою почту [email protected] или в Фейсбук, с уважением автор.

    Научно-популярный журнал Познавайка

    Эта статья доступна на английском – Crystal Lattice in Chemistry.

    Металлическая кристаллическая решётка

    Из-за наличия в узлах ионов, может показаться, что металлическая решетка похожа на ионную. На самом деле, это две совершенно разные модели, с разными свойствами.

    Металлическая гораздо гибче и пластичнее ионной, для неё характерна прочность, высокая электро- и теплопроводность, эти вещества хорошо плавятся и отлично проводят электрический ток. Это объясняется тем, что в узлах находятся положительно заряженные ионы металлов (катионы), которые могут перемещаться по всей структуре, тем самым обеспечивают течение электронов. Частицы хаотично движутся около своего узла (они не имеют достаточной энергии, чтобы выйти за пределы), но как только появляется электрическое поле, электроны образуют поток и устремляются из положительной в отрицательную область.

    Металлическая кристаллическая решётка характерна для металлов, например: свинец, натрий, калий, кальций, серебро, железо, цинк, платина и так далее. Помимо прочего, она подразделяется ещё на несколько типов упаковок: гексагональная, объёмно центрированная (наименее плотная) и гранецентрированная. Первая упаковка характерна для цинка, кобальта, магния, вторая для бария, железа, натрия, третья для меди, алюминия и кальция.

    Таким образом, от типа решётки зависят многие свойства, а также строение вещества. Зная тип, можно предсказать, к примеру, какой будет тугоплавкость или прочность объекта.

    Кристаллическая решетка железа

    Основными строительными блоками твердых веществ, таких как соль или лед, являются молекулы. Каждая молекула состоит из двух или более атомов, например, натрий+хлор (NaCl), как у поваренной соли и водород+кислород, как у льда (H2O). В металлах, однако, такими строительными блоками являются отдельные атомы металла: атомы железа (Fe) в железном прутке или меди (Cu) в медной проволоке. Каждое зерно на рисунке 1 есть то, что называется кристаллом. В кристалле, который состоит из атомов, все атомы однородно расположены по слоям. Как показано на рисунке 2, если провести линии, которые соединяют центры атомов, то трехмерные ряды маленьких кубиков заполнят все пространство, занимаемое отдельным зерном. Эту трехмерную структуру и называют кристаллической решеткой атомов.


    Рисунок 2 – Кристаллическая решетка железа

    Кристаллическое строение металлов. Типы кристаллических решеток

    Когда металл образует твердую структуру, то все его атомы стремятся занять такие положения в пространстве относительно друг друга, чтобы они соответствовали минимуму потенциальной энергии. Этому минимуму соответствует кристаллическая решетка.

    Под кристаллической решеткой понимают такую пространственную атомную структуру, которая может быть получена, если известны координаты ограниченного числа ее атомов и вектора их трансляции в пространстве. Указанное число атомов называется базисом решетки, а их положения образуют так называемую элементарную ячейку.

    Все металлы кристаллизуются в трех основных типах решеток:

    • гранецентрированная кубическая (ГЦК);
    • объемно-центрированная кубическая (ОЦК);
    • гексагональная плотноупакованная (ГПУ).

    Благодаря кристаллическому строению металлы обладают такими свойствами, как пластичностью, упругостью и металлическим блеском.

    Кристаллическая решетка феррита

    В железе при комнатной температуре эти кубики имеют атомы в каждой из восьми углов и один атом прямо в центре куба. Эту кристаллическую решетку называют объемноцентрированной, а геометрическое расположение атомов называют объемноцентрированной решеткой. Железо с объемноцентрированной кристаллической решеткой называют ферритом

    . Другое название для феррита – альфа-железо или α-железо.

    Решетки ГЦК, ОЦК, ГПУ

    Изучая кристаллическое строение металлов, охарактеризуем подробнее каждый тип кристаллической решетки. Начнем с ГЦК. Она показана ниже на рисунке.

    Как видно, это решетка представляет собой кубик, в котором атомы расположены в его вершинах и в центрах всех шести граней. Применяя методы кристаллографии, несложно показать, что для получения такой решетки в пространстве достаточно всего четырех атомов и векторов трансляций, совпадающих с ребрами куба.

    Примерами металлов, которые кристаллизуются в ГЦК, являются алюминий, медь, золото и серебро. Железо образует ГЦК решетку только при высоких температурах.

    ОЦК решетка показана ниже.

    Мы видим, что она соответствует кубику, в вершинах и в центре которого находится атом. Всего два атома необходимо, чтобы в прямоугольных декартовых координатах построить ОЦК решетку. Такие металлы, как ванадий, тантал, ниобий, вольфрам имеют именно эту кристаллическую структуру.

    Наконец, ГПУ решетка. Она представлена ниже на рисунке.

    Эта кристаллическая решетка металлов отличается от двух предыдущих тем, что она в пространстве образует не куб, а правильную шестиугольную призму, которая состоит из шести атомов. В данной структуре кристаллизуются такие элементы, как титан, цирконий, магний и кобальт.

    голоса
    Рейтинг статьи
  • Ссылка на основную публикацию
    ВсеИнструменты
    Adblock
    detector