Sofi-spb.ru

Стройка и ремон
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Припой для пайки титана

Пайка титана и сплавов на основе титана

Пайка титана и его сплавов

Титан по совокупности физико-механических свойств является одним из важнейших современных конструкционных материалов. Он почти в 2 раза легче, чем углеродистые стали и многие цветные сплавы, его плотность равна 4,5 г/см3. Титан — высокопрочный (σв = 300 . 600 МПа) и пластичный (δ = 25 . 50 %) металл; его коррозионная стойкость в ряде агрессивных сред превосходит коррозионно-стойкие стали. Титан довольно широко распространен в природе; его в 10 раз больше, чем Mn, Cr, Cu, Zn, V, Ni, Co, W и Nb вместе взятых. Эти и ряд других ценных свойств открывают большие возможности для широкого применения титана в промышленности.

На поверхности титана всегда имеется альфированный слой, насыщенный атмосферными газами. Перед пайкой этот слой необходимо удалить пескоструйной обработкой или травлением в растворе следующего состава: 20 . 30 мл H2NO3, 30 . 40 мл НСl на литр воды. Время травления 5 . 10 мин при 20 °С. После такой обработки на поверхности титана все же остается тонкая оксидная пленка, препятствующая смачиванию его поверхности припоем. Поэтому иногда пытаются паять титан с применением специальных флюсов, по составу аналогичных флюсам для пайки алюминия. Но соединения титана, паянные с применением таких флюсов, не отличаются высоким качеством. Обычно пайку титана и его сплавов ведут в вакууме или аргоне, который тщательно очищен от примесей кислорода, азота и паров воды. Только в такой чистой атмосфере или в вакууме оксидная и нитридная пленки на титане растворяются в металле при условии, что температура пайки выше 700 °С.

Поэтому процесс пайки титана ведут обычно при температуре 800 . 900 °С, что способствует быстрой очистке поверхности титана и хорошему смачиванию его припоями.

Пайку титановых сплавов при более высоких температурах производят довольно редко (особенно печную), так как при его длительном нагреве при температурах выше 900 °С отмечаются склонность к росту зерна и некоторое снижение пластических свойств. Поскольку предел прочности основного металла при этом практически не снижается, то в отдельных случаях соединение титановых сплавов пайкой производят даже при 1000 °С.

Водород, всегда находящийся в титане и снижающий его пластичность, удаляется при пайке (или нагреве) в вакууме 10-2 Па при температуре около 900 °С, поэтому пайка титана в вакууме предпочтительнее, чем пайка в нейтральной атмосфере.

При выборе припоя, способа и режимов пайки необходимо иметь в виду, что титан образует хрупкие интерметаллиды в паяном шве почти со всеми элементами, входящими в припои. Поэтому в качестве основы припоя часто выбирают серебро, которое образует с титаном интерметаллиды, предположительно менее хрупкие, чем с другими металлами. Иногда за основу припоев выбирают алюминий, который образует с титаном ограниченную область твердых растворов, что позволяет рассчитывать на получение менее хрупких паяных соединений.

При пайке титана в вакууме чистым алюминием, из-за образования в шве интерметал-лидных фаз, соединения имеют практически нулевую прочность. Толщина интерметаллидной прослойки уменьшается, если при пайке титана в качестве припоя применяется алюминий, легированный Си, Fe, Ge, Mg, Mn, Ni, Sb, Ti, Zr и Si. Все названные добавки (по 1 % в отдельности) способствуют подавлению роста интерметаллидной прослойки. Наиболее эффективное торможение обеспечивает 0,8 % Si в Al.

При пайке в вакууме титана таким припоем образуется интерметаллидный слой небольшой толщины состава AI3Ti, но прочность соединений не превышает 80 МПа. При применении другого припоя на основе Аl, содержащего 4,8 % Si; 3,8 % Си; 0,2 % Fe и 0,2 % Ni, при пайке титана ВТ1 в вакуумной печи при температуре 670 ± 10 °С и выдержке 5 мин прочность соединений равна 140 МПа. Пайка ТВЧ в среде аргона при температуре 720 ± 10 °С трубопроводов из сплава ВТ1 припоем на основе алюминия, содержащего: 0,3 % Fe; 0,35 % Si и 0,05 % Сu, дает возможность получить герметичные соединения с прочностью τ ср = 110 . 130 МПа.

Пайка титановых сплавов оловянно-свинцовыми и другими низкотемпературными припоями применяется редко. В этом случае перед пайкой титан покрывают никелем химическим или гальваническим способом. Для увеличения сцепления никеля с титаном детали подвергают нагреву до 250 °С в течение 1 ч. После этого пайку производят теми же припоями и флюсами, которые используют для чистого никеля. Паять титан и его сплавы низкотемпературными припоями можно также после предварительного покрытия изделий оловом, серебром или медью.

Для покрытия оловом подготовленное под пайку изделие быстро опускают на 10 . 20 мин в нагретое до 700 °С олово. Покрыть титан оловом можно и при помощи флюса, в состав которого входит хлористое олово. Компоненты флюса просушивают и применяют в мелкоразмолотом виде. Изделие покрывают флюсом толщиной до 3 мм и нагревают в печи с нейтральной средой до 350 . 400 °С. Медное покрытие может быть получено погружением изделия на несколько секунд в расплавленную хлористую медь или ее смесь с другими хлоридами меди при 650 . 700 °С.

Серебром титан покрывают методом погружения изделия в расплавленное серебро. После охлаждения деталь очищают от остатков флюса и шлака паром или кипячением в воде с последующей зачисткой наждачной бумагой или щеткой. Луженое изделие паяют легкоплавкими припоями с Тпл ≤ 200 °С с применением канифольных флюсов.

П

Особенности пайки титана и титановых сплавов определяются его высокой химич. активностью. В связи с большой растворимостью кислорода и азота в титане на его поверхности при нагреве на воздухе образуется альфированный хрупкий слой, а также стойкие окислы титана. Водород, мало растворимый в альфа-титане, образует в альфа- сплавах гидриды титана, охрупчивающие их; водород в бета-титане растворим в большей степени и ускоряет эвтектоид- ный распад в a -f- р-титановых сплавах. Ввиду отсутствия достаточно активных флюсов для пайки титановых сплавов их не паяют на воздухе, а в связи с охрупчиванием, вызываемым водородом и азотом, не паяют и в среде водорода и азота. Пайка титановых сплавов производится только после удаления с поверхности деталей окислов и альфированного слоя механич. зачисткой или химич. травлением после гидропескоструйной обработки (напр., в растворе состава: 30 мл НС1, 20 мл HF, 950 см3 Н20 в течение 4—6 мин. при 20°). При пайке серебряными припоями и припоями Ti—Ni детали нагревают в среде проточных чистых и сухих нейтральных газов, чаще всего в аргоне. П. т. с. возможна в сравнительно невысоком вакууме (1-10″2—1-10-*мм рт. ст.). При пайке титановых сплавов алюминием и оловом паяемую поверхность предварительно лудят путем быстрого погружения в перегретое до 600—650° олово или перегретый до 850—900° алюминий и затем паяют с обычными для этих припоев флюсами (см. Припои легкоплавкие, Припои для пайки алюминиевых сплавов). Пайка сплава ВТ1 оловом и припоем ПОС40 возможна также в среде чистого сухого проточного аргона. При лужении титана алюминием применяют флюсы для пайки алюминиевых сплавов.

Титан образует с большинством металлов хрупкие химич. соединения, поэтому паяные швы обладают пониженной пластичностью и прочностью, а осн. материал интенсивно растворяется в жидких припоях. При нагреве выше 1000° многие титановые сплавы склонны к сильному росту зерна и к необратимому ухудшению механич. св-в. Более высокая прочность паяных соединений из титана и его сплавов может быть получена при диффузионной пайке, в результате диффузии компонентов припоя (напр., меди, ннкеля, серебра) в основной металл. Это обусловлено способностью титана к образованию широких областей твердых растворов с нек-рыми металлами (Ag, Ni, Си).

Для предотвращения интенсивного растворения титана в жидких припоях и об разования прослоек хрупких интерметаллидов в паяных швах нагрев деталей под пайку должен быть ограниченным по темп- ре и возможно более кратковременным, а припой строго дозированным. Иногда для этой цели, а также для предотвращения окисления титана на воздухе на паяемые поверхности предварительно наплавляют серебро или наносят др. покрытия, напр. никель (химич. способом; слой 10— 20 мк). Для улучшения адгезии между никелевым покрытием и осн. материалом детали нагревают при 250° в течение 2— 2,5 час. Наносить промежуточные покрытия на титановые сплавы совершенно необходимо при пайке их со сталью или медными сплавами, а также при пайке в пламени газовых горелок или токами высокой частоты на воздухе. Пайка титановых сплавов. выполняется в вакуумных печах или спец. герметизированных контейнерах, напр. из нержавеющих сталей, предварительно вакуумированных или продуваемых сухим чистым аргоном. Детали загружаются в электропечи, нагреваемые кварцевыми теплоизлуча- телями. Пайка в аргоне проходит более успешно при экранировании паяемой детали от поступающей в контейнер струи аргона.

Для предотвращения интенсивного роста зерна титана и его сплавов рабочая темп-ра применяемых припоев должна быть не выше 1000° (см. Припои для пайки титановых сплавов).

Лит.: Горячев А. П. [и др.], Аргоно-дуговая сварка и пайка титана, Л., 1957; Лашко- Авакян С. В., Лашко Н. Ф., Пайка легких металлов (магния, титана, бериллия) и их сплавов, М., 1958; Титан и его сплавы, под ред. Л . С . Мороза , т . 1, Л ., 1960; Brazing titanum sandwich, «Aircraft and Missiles», 1959, v. 2, № 11, p. 22. Лит. см. также при ст. Пайка.

Пайка титана и его сплавов

ные количества циркония, выполняют в вакууме с остаточным разрежением 1,33 . 10 -4 Па.

Для нагрева титана при пайке используют вакуумные или обычные электропечи. В последнем случае требуемая атмосфера вакуума или сухого инертного газа создается в герметизированном контейнере с помещенным в него изделием. Контейнеры изготовляют из тонколистовой хромоникелевой коррозионно-стойкой стали. При нагреве под пайку контакт титана со стенками контейнера недопустим во избежание их контактного плавления с образованием эвтектики Ti—Ni. Поэтому изделие изолируют прокладками из молибдена, слюды или керамики, не восстанавливаемой титаном (методом плазменного напыления наносят на приспособление слой оксида алюминия).

При пайке титана в вакууме должен отсутствовать контакт его с углеродом, так как он имеет высокое химическое сродство с титаном. При использовании графитовых нагревателей их покрывают слоем А123. Нагрев контейнера с помещенным в него изделием небольших размеров возможен в расплавленной солевой ванне. При пайке титана и его сплавов с локальным нагревом применяют, например, лучевой нагрев или газовое пламя и флюс.

При газопламенной пайке с флюсами рекомендуют нагревать детали только после того, как припой уложен в зазор и поверхность титана, подвергаемая нагреву, покрыта слоем флюса. Применяемые для пайки титана флюсы малоактивны, часто загрязняют паяемую поверхность; припои растекаются по ней плохо и не обеспечивают стабильных механических характеристик паяных соединений. Сопротивление срезу соединений из титана и его сплавов, паянных в кислородно-ацетиленовом пламени серебрянными припоями с флюсами, составляет 39,2—225,4 МПа.

Опыты по ультразвуковой пайке титана не дали положительных результатов. Например, после ультразвукового лужения сплава ОТ4 слои припоев П200А и ПОС 61 оказались слабо связанными с основным металлом.

Высокое химическое сродство титана с другими элементами, в том числе и металлами, обусловливает его способность образовывать с большинством из них химические соединения и широкие области ограниченных твердых растворов, чаще всего с эвтектикой. Перитектики с титаном образуют только серебро (с химическим соединением TiAg) и вольфрам (без химического соединения). Неограниченные твердые растворы с титаном образуют лишь тугоплавкие металлы (Zr, V, Mo, Nb). Среди них цирконий и ванадий образуют твердые растворы с минимумом температуры плавления, а молибден и ниобий — твердые растворы с повышающейся температурой плавления сплавов при их введении.

Необходимость ограничения температуры пайки титана и его сплавов связана с большой скоростью роста его зерна и охрупчиванием в присутствии в сплаве кислорода при температурах

выше 1000—1050 °С. Поэтому в качестве основы припоев для пайки титана и его сплавов используют среднеплавкие металлы — алюминий, серебро и легкоплавкий металл — олово, образующие с титаном химические соединения или достаточно легкоплавкие эвтектики, богатые титаном, с медью, никелем, кремнием. При пайке титана и его сплавов такими припоями в шве могут образовываться прослойки химических соединений и хрупкие эвтектики, содержащие эти соединения. Вследствие этого в паяемом металле отсутствует межзеренная химическая эрозия, но возможно охрупчивание паяемого металла при пайке.

Среди интерметаллидов, образуемых титаном с другими металлами, TiNi имеет достаточно высокую пластичность (б = 15 %; КС = 37,9 Дж/м 2 ; ов = 852,6 МПа; tпл = 1300 °С). Однако в паяных швах при перитектической реакции в процессе охлаждения TiNi превращается в хрупкий интерметаллид Ti2Ni. Интерметаллид Ti Ag, суда по его микротвердости, значительно пластичнее, чем интерметаллид Ti2Cu.

Для пайки титана прежде всего нашли применение серебряные припои. При температуре перитектики в сплавах образуется неконгруэнтное соединение TiAg и широкая область твердых растворов. Интерметаллид TiAg относительно пластичен, но соединения из титана, паянные серебром, обладают невысоким сопротивлением срезу, в частности, из-за большой разницы температурных коэффициентов линейного расширения этой фазы и титана.

Введение в серебряный припой более 7—10 % Си после пайки готовым припоем приводит к резкому снижению механических свойств соединения вследствие образования по границе с паяемым металлом хрупких интерметаллидов TiCu3 и Ti2Cu. Из-за неравновесности процесса затвердевания при охлаждении паяного шва уже при содержании в серебряном припое свыше 0,3 % Си сначала образуется прослойка интерметаллидов в медью, а затем эти неравновесные фазы растворяются в припое, а по границе шва с основным металлом образуется равновесная для этих условий прослойка TiAg.

Для пайки титановых сплавов применяют также серебряные припои, легированные палладием и галлием, следующих составов (%): 1) 20 Pd, 3—10 Ga, Ag — остальное; tп=930—960 °С; 2) 10 Pd, 90 Ag; tпл = 985 °С, tп=1000 °С; 3) 7—15 Pd, 5—9 Ga, Ag — остальное; tп = 930-960 °С; 4) 3,5—6 Pd, 3,5—10 AI, Ag — остальное; tп = 650-790 °С.

Технология пайки с этими припоями: медленный нагрев до 600 °С в вакууме (р= 1,33 . 10 -3 Па), заполнение рабочей полости печи геллием, быстрый нагрев до температуры пайки, выдержка при ней 2 мин и медленное охлаждение (50 °С/мин). Получаемые при этом паяные соединения имеют высокие механические свойства, однофазны по структуре и бездефектны. Припои обладают низкой эрозионной способностью по отношению к титановым сплавам.

Другой основой припоев для капиллярной пайки титана служит алюминий. Этот металл образует с титаном двойную диаграмму состояния с химическими соединениями. Однако скорость роста интерметаллида TiAl3, образующегося по границе с паяемым металлом при температуре пайки, невелика, что обусловлено сравнительно высокой его энергией активации, равной 154 Дж/моль.

Алюминиевые припои при капиллярной пайке титановых изделий нашли применение при изготовлении звукопоглощающих сотовых панелей (при пайке обшивки с сотоблоками). В качестве припоя применен алюминиевый сплав 3003 в виде фольги толщиной 0,2 мм. Пайку проводили в вакуумной печи при давлении 2,0 . 10 -4 Па. Изделие для предотвращения стекания припоя подвергали вращению через дверцу печи. Режим пайки: нагрев до 679 °С; выдержка 3 мин с последующим охлаждением путем напуска в печь газа при температуре 66 °С. Для предотвращения заплавления перфорационных отверстий использовали стоп-пасту из А12з в виде порошка со связкой из изопрена и метакрилата. Паяные титановые панели на 30—50 % легче и имеют в 3 раза большую почность на отрыв обшивки и в 10 раз меньшую потерю акустических свойств из-за перекрытия перфорационных отверстий, чем сварные панели из никелевого сплава инконель-625 [44].

Читать еще:  Паяльная паста; MECHANIC; (пайка без паяльника)

Важнейшими депрессантами титановых припоев кроме меди, никеля являются кобальт, кремний, германий, бериллий. Температура плавления наиболее легкоплавкой эвтектики титана с этими элементами соответственно 1025, 1330, 1360, 1030 ±50 °С. Эти депрессанты имеют еще одно преимущество: каждый из них образует достаточно широкую область твердых растворов с титаном и неконгруэнтные химические соединения с относительно невысокой температурой разложения (энергией активации), что является важнейшим принципом осуществления диффузионной пайки.

Высокотемпературные эвтектики титана с кремнием и германием нашли применение главным образом в качестве припоев для пайки тугоплавких металлов, в том числе с графитом. Они образуют коррозионно-стойкие паяные соединения и хорошо противостоят интенсивному ядерному излучению. Соединения из титана или ниобия, паянные титановыми припоями с кремнием, способны длительно работать при температуре выше 1200 °С.

В контакте паяемого металла А с припоем А—В или В могут образоваться прослойки только тех химических соединений, которые на диаграмме состояния А—В располагаются между паяемым металлом и припоем. Между титаном и эвтектиками Ti—Ni или Ti—Sn на соответствующих диаграммах состояния химических соединений нет. Поэтому при пайке титана припоями, содержащими никель или кремний в количествах, не больших, чем в эвтектике, по границе паяемого металла и жидкого припоя прослойки химических соединений не образуются. Однако присутствие в припое меди и кремния, вследствие чего число атомов алюминия на единицу площади паяемого металла, смоченного

припоем, уменьшается, может привести к торможению роста интерметаллида TiAl3. Это подтверждается данными о том, что при пайке титанового сплава припоем Al—48 % Si—3,8 % Сu скорость роста интерметаллида TiAl3 при температуре 680 °С в 3 раза меньше, чем при пайке припоем А1—1,2 % Мп; при температуре пайки 510°С образуются галтельные участки, но хрупкие интерметаллидные прослойки не возникают.

Введение алюминия в серебряные припои для снижения их температуры плавления возможно лишь в ограниченных количествах; обычно это количество не превышает 5 %. Для улучшения смачивания такими припоями титана в проточном аргоне в них вводят

0,2 % Li. Снижение температуры плавления серебряных припоев может быть достигнуто при введении в них олова. Олово, как и алюминий, образует с титаном тугоплавкие химические соединения. Предельное содержание олова в серебряных припоях 5 %. Такие припои имеют более низкие механические характеристики, чем припои на основе серебра, легированные алюминием.

Наибольшую прочность паяных соединений можно обеспечить при пайке припоями на той же основе, что и паяемый металл, а также на основе металлов, образующих с ним неограниченные твердые растворы. Такой основой припоев при пайке титана могут быть цирконий и ванадий, образующие с титаном непрерывные твердые растворы с минимумом на диаграмме состояния.

Вследствие более высокого химического сродства циркония к кислороду, по сравнению с титаном, пайка титана и его сплавов припоями, содержащими цирконий, требует более высокого вакуума (р = 1,33 . 10 -4 Па) или сохранения вакуума (р = 1,33 . 10 — 1,33 . 10 -2 Па), но с предварительной очисткой пространства контейнера сухим чистым аргоном.

Титан с большинством металлов образует системы сплавов эвтектического типа. Во всех таких сплавах одна или две фазы эвтектики являются малопластичными химическими соединениями. Поэтому титановые припои, легированные такими элементами, за исключением тугоплавких металлов, с которыми титан образует непрерывные ряды твердых растворов с минимумом, малопластичны и применяются в виде порошковых паст или в виде фольги, состоящей из нескольких слоев пластичных составляющих сплавов, чередующихся с прослойкой титана и вступающих с ней в контактно-реактивное плавление в процессе пайки.

Возможна контактно-реактивная диффузионная пайка сплава ВТ14 с прослойкой палладия при температуре 1160 ?С с выдержкой 15 мин. Гомогенизирующий отжиг производится при 900 °С в течение 12 ч. Капиллярная диффузионная пайка припоями Сu—Ti, Ni—Ti, Fe—Ti выполняется при температуре 960 °С в течение 15 мин с гомогенизирующим отжигом при 900 °С в течение 12 ч. Такие режимы обеспечивают равнопрочность паяных соединений с основным материалом.

Автор: Администрация

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

ТОП (нов) / Пайка-титан

ТИТАН И ЕГО СПЛАВЫ

Титан и конструкционные сплавы на его основе нашли широкое применение в ряде отраслей промышленности благодаря своим уникальным физико-химическим свойствам, в частности, высокой удельной прочности, превосходящей сталь, алюминий и магниевые сплавы, высокой коррозионной стойкости.

Основной отличительной особенностью титана является его способность поглощать атмосферные газы и водород, образуя хрупкие сплавы, непригодные для практического использования. Наиболее активно идет взаимодействие с водородом – при наличии активированной поверхности поглощение водорода происходит уже при комнатной температуре. С кислородом воздуха заметно взаимодействует при температуре выше 500. 600°С с образованием оксида TiO2, называемого рутилом. С азотом титан реагирует при температуре выше 700°С, при этом образуются нитриды типа TiN в виде тонкого порошка или проволоки.

Особенности пайки титана

Паяемость титана и его сплавов определяется его высоким химическим сродством к другим элементам, в том числе кислороду, азоту, водороду. Это обусловливает, в частности, высокую химическую и термическую стойкость его оксидов. Взаимодействие с компонентами атмосферы приводит к образованию на поверхности титана хрупкого слоя твердого раствора кислорода и азота в титане (альфированный слой). Этот слой перед пайкой должен быть тщательно удален с поверхности паяемых деталей механическим или химическим способом (травлением, как правило, в растворах кислот).

Образование оксидов на очищенной поверхности титана при температуре 20˚С происходит сравнительно медленно, и пайка может быть проведена в течении первых суток после травления. При нагреве, особенно до температур выше 650-700˚С, скорость роста оксидной пленки резко возрастает.

Механизм окисления титана при нагреве в газовых средах можно представить как результат действия гетерогенных процессов: на границе «оксид-газ» происходит адсорбция кислорода, его ионизация и образование оксида, а также частичная диффузия атомов кислорода в глубину оксидной фазы; на границе «оксид-металл» осуществляется переход атомов кислорода из оксида в металлическую фазу с образованием твердого раствора внедрения и атомов титана в оксидную фазу. Движущей силой этих процессов является разность концентраций компонентов на границе раздела взаимодействующих фаз – С.

Рис.…. Модель окисления, охватывающая растворение кислорода в металле и образование оксидной пленки: y – толщина оксидной пленки, h – глубина газонасыщенного слоя,  — глубина охрупченного слоя.

Из схемы окисления следует, что изменение толщины оксидной пленки на поверхности титана в общем случае можно представить как разность скоростей процессов образования оксидной пленки (VО) и ее утонения (VР) за счет растворения кислорода в титане

,

где y – толщина пленки оксида,  — время.

Следовательно, при пайке можно создать условия, при которых рост оксидной пленки сменится ее растворением. На возможность реализации процесса пайки существенное влияние оказывают как парциальное давление кислорода, так и температура нагрева. Однако, повышение температуры приводит к увеличению скорости взаимодействия кислорода с титаном. При этом кислород, растворяясь в титане приводит к увеличению толщины альфированного слоя на его поверхности, что особенно актуально для деталей малой толщины, поскольку в этом случае толщина альфированного слоя соизмерима с толщиной самой детали. В этом случае, после длительного нагрева, даже в условиях вакуума, возможно существенное охрупчивание материала, вплоть до полной потери работоспособности.

Кроме того, нагрев и выдержка при повышенных температурах, при которых происходит активное растворение кислорода в титане, приводит к значительному увеличению скорости роста его зерна, что снижает механические характеристики титана и его сплавов, а также приводит к интенсификации процессов образования и роста интерметаллидных прослоек.

Образование оксидной пленки на поверхности паяемого изделия и рост толщины альфированного слоя при пайке могут быть предотвращены, если изделие нагревать в атмосфере с низким парциальным давлением кислорода, например, чистом проточном аргоне или вакууме. Несмотря на то, что оксид титана TiO2 не восстанавливается в вакууме с остаточным давлением более 1,33∙10 -3 …1,33∙10 -5 Па, относительно большая растворимость кислорода в α-титане (до 20%) и низкое парциальное давление кислорода оказываются достаточными для предотвращения образования оксида на предварительно очищенной поверхности титана при нагреве, и способствуют очистке поверхности от оксида за счет его растворения в основном металле.

Традиционно титан и его сплавы паяют при температуре выше 700–860˚С, те есть выше температуры перехода α-титна в β-титан, в котором особенно высока растворимость кислорода. При этой температуре, при нагреве в среде с низким парциальным давлением окислительных компонентов, скорость образования оксидной пленки значительно меньше скорости ее восстановления за счет растворения кислорода в титане, что способствует «самоочищению» поверхности нагреваемых деталей.

Припои

При выборе припоя, способов и режима пайки необходимо иметь в виду, что в паяном шве титан образует хрупкие интерметаллиды почти со всеми элементами, входящими в припой. Поэтому в качестве основы припоя часто выбирают серебро, которое образует с титаном интерметаллиды, менее хрупкие, чем с другими металлами.

Для пайки титановых сплавов в вакууме и инертных газах применяют также серебряные припои, легированные палладием и галлием. Температура пайки этими припоями лежит в диапазоне 650…1000˚С. Получаемые при этом паяные соединения имеют высокие механические свойства, однофазны по структуре и бездефектны. Припои обладают низкой эрозионной способностью по отношению к титановым сплавам.

Высокие прочностные характеристики паяных соединений можно получить при высокотемпературной пайке титана припоями на основе никеля или меди (σв≈30 МПа), но эти металлы очень активно взаимодействуют с титаном, растворяют его, вызывая сильную эрозию и охрупчивание в зоне шва.

Наибольшую прочность паяных соединений можно обеспечить при пайке припоями на той же основе, что и основной паяемый металл, а также на основе металлов, образующих с ним неограниченные твердые растворы. Такой основой припоев при пайке титана могут быть цирконий и ванадий, образующие с титаном непрерывные твердые растворы с минимумом на диаграмме состояния. Важнейшими депрессантами титановых припоев кроме меди, никеля являются кобальт, кремний, германий, бериллий.

Наиболее часто применяемым припоем на основе титана является припой ВПр 16, содержащий 8…18% Ni, 11…14% Zr, 21…24% Сг, Ti – остальное. Известны также, разработанные в МИФИ-АМЕТО аморфные ленточные припои на основе титана СТИМЕТ 1201 аналогичного состава, и на основе циркония СТИМЕТ 1403 (9…11% Ti, 9…11% Ni+Cu+Fe+Be+Al+Ge, Тпл=680С). Применение аморфных припоев позволяет увеличить механические свойства паяных соединений на 10-40%, повысить пластичность в 1,5-1,8 раза, снизить массу паяных узлов.

Пайка титановых сплавов оловянно-свинцовыми и другими низкотемпературными припоями применяется редко. В этом случае перед пайкой титан покрывают слоем никеля, олова, серебра или меди. После этого пайку производят соответствующими припоями и флюсами.

Достаточно часто в качестве припоев для капиллярной пайки титана используют сплавы на основе алюминия. Этот металл образует с титаном двойную диаграмму состояния с химическими соединениями. Однако скорость роста интерметаллида TiAl3, образующегося по границе с паяемым металлом при температурах пайки, относительно невелика, что обусловлено сравнительно высокой его энергией активации, равной 154 Дж/моль. Соединения, паяные алюминиевыми припоями, имеют высокую коррозионную стойкость, а также достаточно высокую прочность. Эти припои также применяются и для пайки алюминиевых сплавов, поэтому их следует считать наиболее перспективными для пайки комбинированных конструкций из титана и алюминия.

Способы пайки титана

Пайка титана легкоплавкими припоями возможна только после предварительного лужения паяемой поверхности погружением в расплавленный припой при температурах, при которых тонкий слой пленки TiO2 может быть восстановлен вследствие растворения кислорода в титане при температуре 800-900С. После удаления оксидных пленок и нагрева в инертной среде смачивание титана выбранными припоями хорошее.

Перед пайкой титана с алюминием или алюминиевыми сплавами применяют предварительное алитирование титана в жидком алюминии.

Также нашли применение при пайке титана и флюсовые способы, причем флюсы, применяемые при пайке сплавов на других основах, не пригодны для пайки титана. Рекомендуемые в литературе флюсы для пайки титана и его сплавов содержат главным образом хлориды и фториды металлов и рекомендованы для пайки в пламени кислородно-ацетиленовых горелок и в печах. При газопламенной пайке с флюсами не удается добиться хорошего смачивания поверхности титана припоями и обеспечить стабильные механические характеристики паяных соединений. Лужение с помощью реактивных флюсов основано на способности титана восстанавливать металлы из их расплавленных солей. Процесс идет по следующим уравнениям:

При этом хлорид титана TiCl4 в виде газа улетучивается с поверхности металла, разрушая при этом оксидную пленку TiO2, а восстановленные олово и серебро покрывают чистую поверхность облуживаемого металла. После окончания реакции и охлаждения деталей остатки флюса должны быть немедленно и тщательно смыты, а детали просушены. Очищенную поверхность титана и его сплавов, покрытую оловом или серебром, подвергают пайке обычными способами.

Опыты по ультразвуковой пайке титана не дали положительных результатов. Например, после ультразвукового лужения сплава ОТ4 слои припоев П200А и ПОС61 оказались слабо связанными с основным металлом.

Диффузионная пайка титана применяется при необходимости получить пластичные и прочные соединения. Сущность диффузионной пайки заключается в том, что изделие, паяное минимально необходимым количеством припоя, представляющим собой сплав титана с никелем, медью, железом, кобальтом эвтектического типа, выдерживают при температуре пайки до тех пор, пока в паяном соединении не образуется пластичный твердый раствор. Прочность соединений, полученных таким образом, близка к прочности основного металла. Широкое применение нашла контактно-реактивная диффузионная пайка, при которой припои с большим содержанием титана образуются при контактно-реактивном плавлении паяемого металла с тонкими (порядка десятка микрометров) прослойками деперссантов и тугоплавких металлов.

Наиболее производительным и перспективным способом пайки титана и его сплавов, особенно легированных алюминием, ванадием и молибденом, является печная пайка в вакууме или сухом проточном аргоне с точкой росы ниже –65С с предварительным вакуумированием контейнера. Пайку в вакууме осуществляют при остаточном давлении

10 -4 Па. При этих способах пайки активация поверхности титана обеспечивается путем восстановления оксида на его поверхности за счет растворения кислорода из него в основном металле. Это становиться возможным в том случае, когда скорость образования оксида меньше скорости его восстановления. Достичь этого можно путем снижения парциального давления кислорода в паяльной атмосфере. Время пайки в этом случае существенно зависит от величины парциального давления кислорода. При пайке титана в вакууме должен отсутствовать контакт его с углеродом, так как он имеет высокое химическое сродство с титаном.

Читать еще:  Для чего нужен флюс при пайке

Для снижения температуры начала смачивания при вакуумной пайке могут использоваться металлы-активаторы, вводимые в виде паровой фазы или в состав припоя. Так, например, при пайке титана эвтектическим силумином введение паровой фазы свинца позволяет снизить температуру начала смачивании с 670…700°С до 590…600°С.

При пайке в вакууме или инертных газах герметизация контейнера и чистота его внутренней поверхности оказывает большое влияние на качество паяного соединения. От действия кислорода, появляющегося в контейнере, наиболее успешно защищают экраны из коррозионно-стойкой стали или из титана в виде крышек или коробок. Наиболее эффективно в этом случае применение контейнеров с затвором, уплотняемым титановой губкой (геттером). В этом случае удается обеспечить условия нагрева, при которых практически отсутствует газонасыщение титана, даже при нагреве в условиях низкого вакуума (форвакуума).

Таким образом, большинство применяемых способов пайки титана и его сплавов, в том числе и пайка в вакууме, по принципу удаления оксидной пленки основаны на процессах ее растворении в самом титане.

Какой флюс и припой лучший для пайки электроники

Для соединения металлов существуют много различных способов, это и сварка электрическим током, который плавит металл и резьбовые/клепочные соединения и конечно же пайка. В отличие от контактного соединения (разъёмы и колодки) пайка обеспечивает более долговечное и что самое важное электропроницаемое соединение, что способствовало ее применению в электронике.

Для любой пайки металлов нужно два элемента ПРИПОЙ и ФЛЮС. В редких случаях, когда пайка производится однородных и чистых от оксидный пленки металлов применяют исключительно припой, но в большинстве случаев добавляют еще и флюс, который выступает дезинфектором поверхности перед нанесением припоя

ПРИПОЙ

Припой может быть флюсованый и офлюсованый , где отличие одного от другого расположение флюса, как правило для высокотемпературной пайки МАПП газом припои офлюсованые т.е. снаружи идет флюс, а припой внутри. Для низкотемпературной пайки припой идет со флюсом внутри и называется флюсованым.

Температура плавления олова 231 °C, а температура плавления свинца 327,5°C но если их смешать то температура плавления будет ниже

ПОС-15 — 280 °C. (15% олова, 85% свинца)
ПОС-25 — 260 °C.
ПОС-33 — 247 °C.
ПОС-40 — 238 °C
ПОС-61 — 183 °C
ПОС-90 — 220 °C (90% олова, 10% свинца)

Как мы поняли оптимальное содержание свинца и олова 39 на 61, хотя многие иностранные припои купленные на аллиэкспресс и других сайтах имеют соотношение 63 на 37.

Оценка припоя на качество

Основных оценок припоя две, это текучесть, т.е. насколько хорошо припой растекается по поверхности контакта и структура поверхности после пайки (матовая или блестящая). Считается что чем легче растекается припой и чем блестящей его поверхность после пайки, тем лучше его качество. Так же встречаются припои которые после пайки на своей поверхности оставляют бугры и неровности, что считается недопустимым, так же как и трещины после остывания

Что лучше ПОС 40 или ПОС 61

Если изогнуть эти два припоя то ПОС 40 будет гнуться без хруста, в то время как пос 60 грустить при изгибании, это и говорит о недостатки одного и преимуществах другого, ведь именно гибкость и пластичность очень часто нужна в радиомонтаже, так же встречается и вибрационные нагрузки, которые естественно лучше выдерживает ПОС 40, но при его применение поднимается температура, а следовательно возрастает риск перегрева радиокомпонентов или дорожек

Сплав розе

Олово 25 Свинец 25 Висмут 50
Температура плавления 95%

В отличие от справа ВУДА обладающего теми же параметрами менее тактичный, так как не содержит кадмий

Для пайки не применяется, так как материал более хрупкий по сравнению с ПОС 61 припоем, но лудить можно в воде, где поднимают температуру кипения добавлением глицерина (кипение 290 градусов), чтобы не было испарение воды и металлы не попадали вместе с паром в легкие человека

Так же при лужении в раствор воды и глицерина можно добавлять лимонную кислоту, что увеличивает качество, так как раствор становится флюсом. Процентное соотношение 1 грамм лимонной кислоты на 100 грамм раствора

Безсвинцовые припои

В последнее время все больше и больше трубиться тема экологии, если ты не сделал экономичную шубу или электрокар ты плохой и не нужно покупать товар у тебя больше. Не важно, что для производства электрокара урон экологии идет такой же если не больше, но на начальном этапе производства батарей и их утилизации в дальнейшем. Да сам процесс безопасен для экологии по сравнению с бензиновыми двигателями, но это лишь иллюзия если считать со стадии производства до стадии утилизации.

Экологичный вопрос терзает и производителей электроники, которые стали убирать из состава своих припоев свинец, на мой субъективный взгляд это приводит к более сложному ремонту и одноразовости техники.

Какой диаметр припоя купить?

Основным правилом в выборе диаметра припоя считается объем пайки, если Вы используете припой для пайки силовых установок с толстыми проводниками, то Вам необходим припой с диаметром 1.5 мм или даже 3 мм, а иногда и все 10 мм. Если же Вы паяете исключительно «тонкую» электронику, микроконтроллеры и симисторы в малых корпусах, то Вам достаточно диаметра в 1 мм. Некоторые предпочитают не увлекаться с количеством припоя, так как его излишек, так же не считается нормой и используют диаметры в 0.5 мм

ФЛЮСЫ

Второй элемент любой качественной пайки является флюс, который может быть в двух состояниях жидкий и твердый. Под твердыми флюсами мы понимаем классическую канифоль, а под жидкими ЛТИ или раствор глицерина

Отмывочный и безотмывочный

Профессиональные мастера по ремонту электроники очень чистоплотны, ведь после их работы не должно остаться ни единого следа, тем более на плате не должно оставаться следов флюса. В зависимости от агрессивности флюса он может хорошо работать в процессе пайки, но и так же хорошо разрушать проводник после пайки и через 2-3 года после ремонта техника может вернуться обратно в ремонт, изрядно подмочив репутацию мастера. Поэтому большинство мастер предпочитают всегда отмывать плату от флюса.

Канифоль

Канифоль применяется для пайки/лужения меди и ее сплавов, а так же стали и цинка, но она не применятся для пайки алюминия и алюминиевых сплавов, для их необходим свой флюс по алюминию

Сама по себе канифоль является диэлектриком, но по мимо этого она очень хорошо впитывает влагу из атмосферы, поэтому возникает коррозия соединения и места пайки, а так же усиливает вероятность токов утечки, которые приводят к сбоям в работе

Глицерин

Глицерин это органическое вещество относящееся к спиртам, но в отличие от своих младших братьев метанола (один атом углерода) и этиленглюколя (два атома углерода) не токсичен и имеет сладковатый вкус. По мимо применения в пайки радиокомпонентов глицерин применяется и в популярный на текущий момент у молодежи, электронных сигаретах, а в прошлом глицерин применялся для производства динамита

По мимо глицерина часто применяют такие вещества как вазелин или паяльный жир, но по сравнению с флюсом ТАГС на основе глицерина они уступают в спектре применения, ведь ТАГС подходит для пайки как меди, так и стали, никеля и сплавов меди (латунь и бронза)

ЛТИ-120

По своей сути флюс ЛТИ состоит из канифоли, растворенной в спирту и добавлены активаторы, которые позволяют паять комфортно не только медь, но и латунь с бронзой. В отличие от глицерина флюс ЛТИ хуже справляется со сталью, но окислительный процесс у него ниже чем у глицерина, хотя так же как и глицерин требует тщательной отмывки изопропиловым спиртом

Удачи в ремонте!

Припои и флюсы

В ремонте электроники необходимо иметь не только паяльное оборудование в виде паяльника или паяльной станции, но так же необходимы припои и всевозможные флюсы, как отмывочные, так и безотмывочные. При этом припои тоже деляться по содержанию свинца и олова в своем сплаве и в зависимости от этих пропо.

Припой для пайки титана

Пайка титана и его сплавов.

Сообщение Aleks » 15 янв 2011, 23:48

Может кто сталкивался?
Необходимо пропаять больстер и соответственно стоит вопрос: какой материал выбрать — титановый сплав или Х18Н10Т.
Интересует в принципе возможность пайки титана мягкими припоями к нержавейке. И если с лужением 40Х13 или 95Х18 никаких проблем (60-ти процентной ортофосфорной кислотой слегка промочил поверхность, паяльником поводил и уже припой, тот же ПОС-61 схватился, можно паять), с титаном все пробы не превели ни к чему. Гугль вразумительного ответа тоже не дал. Даже попытки лужения в уксусе, в котором титан и его сплавы относительно нестоек, и который разрушает пленку окислов тиитанов на поверхности ничем не смог помочь.

Кто что посоветует по этому поводу? Или брать пищевую нержвку для этого дела и не мучаться (хотя она тяжеленная)?

Re: Пайка титана и его сплавов.

Сообщение SASHA » 16 янв 2011, 00:23

Re: Пайка титана и его сплавов.

Сообщение Aleks » 16 янв 2011, 00:26

Re: Пайка титана и его сплавов.

Сообщение ярослав » 16 янв 2011, 09:55

Re: Пайка титана и его сплавов.

Сообщение Aleks » 16 янв 2011, 14:31

Дело не в телепании больстера, а в попадании влаги и крови в щель между клином и больстером (и дальше «по курсу»), что может привести к коррозии (в том числе и электрохимической и весьма резвой особенно в варианте «кровь» при паре титан-сталь) клина в самом труднодоступном месте — в рукоятке. Очень хорошо это чувствуется в Бенчевском Ранте (старом с металлическим упором), где несмотря на довольно точную подгонку масло, вода, кровь и прочие жидкости так и норовят уползти по клинку через такую щель в рукоятку.

Перезвоним за 30 секунд.

Это бесплатно. Ваш телефон в международном формате, пожалуйста. Например,
+7 (495) 111-11-11 Москва, Россия.
+380 (44) 111-11-11 Киев, Украина.
+49 (30) 111-111-11 Берлин, Германия

  • Главная
  • Титан
  • Металл титан
  • Сварка и резка

Пайка титана и титановых сплавов

Техническая характеристика

Взаимодействие атмосферных газов с титаном приводит к образованию на поверхности альфированного слоя, который нужно удалить перед началом пайки пескоструйной обработкой или травлением раствором HNO3 (20−20 мл) или НСl (30−40 мл) на 1 л воды. Время травления составляет от 5 до 10 мин при температуре 20 °C. После этой обработки еще остается оксидная тонкая пленка на поверхности металла, которая плохо смачивается припоем. Как правило, пайка титановых сплавов проводится в аргоне или вакууме, тщательно очищенном от примесей азота, паров воды и кислорода. В связи с этим, пайку проводят, как правило, при t° от 800 до 900 °C. Это обеспечивает быстрое смачивание металла припоями. При более высокой температуре выше 900 °C появляется склонность к увеличению зерна, а также ухудшаются пластические свойства. Снижает пластичность металла находящийся в нём водород. Водород удаляется при нагревании до t° 900 °C в вакууме при давлении 0,01 Па. В связи с этим, пайка титана в вакууме предпочтительнее, чем в нейтральной атмосфере.

Интерметаллиды

Выбирая припой, способ и режим пайки следует помнить, что титан способен образовывать в паяном шве хрупкие интерметаллиды со всеми элементами, которые входят в припои. Поэтому для основы припоя часто применяют серебро. Оно образует с титаном интерметаллиды, имеющие наименьшую хрупкость.

Низкотемпературные припои

Пайка титана оловянно-свинцовыми и др. низкотемпературными припоями используется довольно редко. В данном случае перед началом пайки титан покрывают никелем гальваническим способом. Чтобы увеличить сцепление никеля и титана детали нагревают до t° 250 °C в течение часа. Затем паяют такими же флюсами и припоями, как и для чистого никеля. Паять титан с помощью низкотемпературных припоев также можно после предварительного покрытия серебром, медью либо оловом. Чтобы покрыть оловом изделие подготовленное под пайку, его быстро опускают в нагретое до t° 700 °C олово на 10−20 минут. При помощи флюса, в который входит хлористое олово, также можно покрыть титан оловом.

Поставщик

Вас интересуют пайка титана и его сплавов? Пайка титана и его сплавов от поставщик «Ауремо» предлагается сегодня на выгодных условиях. Соответствие ГОСТ и международным стандартам качества, цена — оптимальная от поставщика. Предлагаем купить продукцию со специализированных складов с доставкой в любой город. Купить сегодня. Оптовым заказчикам цена — льготная.

Купить, выгодная цена

Пайка титана и его сплавов от поставщик «Ауремо» предлагается сегодня по оптимальной цене. На складе представлен самый широкий выбор продукции. Всегда в наличии титан, цена — обусловлена технологическими особенностями производства без включения дополнительных затрат. Оптимальная цена от поставщика. Купить сегодня. Ждем ваших заказов. У нас наилучшее соотношение цена-качество на весь ряд продукции. На связи опытные менеджеры — оперативно помогут купить титан оптом или в рассрочку. Постоянные покупатели могут купить титановый прокат с дисконтной скидкой.

Припой для пайки латуни в Москве

  • Сопутствующие товары для пайки
  • Прутки для сварки металла

Флюс-гель «Для пайки бронзы, латуни,меди» в пром. шприце 12 мл

Флюс-гель «Для пайки бронзы, латуни, меди» в пром. шприце 12 мл.

Припой для пайки медных сплавов

Набор для пайки B10 №4 91169

Припой медный 5% серебра (1 пруток)

Припой Castolin 5% серебра 2*2-500 мм ( медный)

Припой Felder Cu-Rophos®15 (15%, пруток 2 х 500мм)

55420-100 Припой ЗУБР 100гр

Пайка Аларм Припой офлюсованный П14 2мм

Твердый припой CP 203 L-CuP6 Viega

Твердый припой Castolin EcoBraz 38220F (20%, офлюсованный, пруток 2*500мм)

Флюс-паста ВТС, для пайки меди, латуни, бронзы, печатных плат, баночка, 20гр.

Припой Rexant Сплав Розе 50 гр

Пайка Припой Felder 0

Флюс для пайки (Бура) 20г (для пайки стали, чугуна среднеплавкими припоями)

Подставка под паяльник REXANT FD-7049/ZD-10A

Жидкое олово Rexant (химическое лужение плат) (100 мл)

Флюс-гель паяльный ТТ (Keller) индикаторный (Применяется для высококачественной пайки электронных компонентов. Баночка 20 мл)

Технология пайки титана в домашних условиях

Титан по физико-механическим характеристикам выступает в качестве наиболее важного современного конструкционного материала. Его довольно широко используют в промышленности и быту, поэтому в некоторых случаях производится его пайка. Его вес практически в 2 раза меньше, если производить сравнение с углеродистыми сталями и рядом цветных сплавов. Показатель его плотности эквивалентен 4,5 г/см 3 . Титан – очень прочный (минимальный показатель σв равен 300 МПа), пластичный (δ эквивалентен пределу от 25 до 50 %) металл; показатель его коррозионной устойчивости в некоторых агрессивных средах превышает данную характеристику, свойственную коррозионно-стойким сталям.

Аргоно-дуговая сварка титана.

Читать еще:  Оборудование и материалы для пайки радиатора охлаждения автомобиля

Особенности пайки титана

На поверхности титана есть альфированный налет, который предполагает наличие атмосферных газов. Перед процессом пайки упомянутый слой следует устранять, применяя для этого пескоструйную обработку, заменить которую можно методом травления в смеси с определенным составом: 20-30 мл H2NO3, 30-40 мл НСl и 1 л воды. Период травления должен быть ограничен 5-10 мин. тогда как температурный показатель должен быть равен 20° С. После подобной обработки на поверхности материала все же будет присутствовать оксидный налет незначительной толщины, он станет препятствовать смачиванию основания припоем. По этой причине в домашних условиях мастера пытаются паять материал с использованием специальных флюсов, состав которых походит на тот, что имеют флюсы, предназначенные для работы с алюминием. Однако стоит быть готовым к тому, что сопряжения, получаемые посредством подобных флюсов, не обладают значительной прочностью и качеством.

Схема лазерной пайки расклинивающих пластин.

Как правило, титан и его сплавы претерпевают пайку в условиях вакуума или аргона, последний должен быть освобожден от частиц кислорода, водных паров и азота. Исключительно в идеальных условиях оксидный и нитридный налеты на поверхности материала нейтрализуются в металле, что верно, если температурный режим во время работ превышает показатель в 700° С. Это обуславливает работу с титаном при температурном режиме в пределах от 800 до 900° С, что гарантирует скорую очистку основания материала и интенсивное смачивание его припоями.

Пайку титановых сплавов при значительных температурах осуществляют не столь часто, что особенно касается печной плавки. Это объясняется тем, что при длительном нагреве, когда температура превышает 900° С, проявляется склонность к увеличению зерна и ухудшению пластических характеристик. Так как уровень прочности главного металла при этом почти не изменяется, в некоторых случаях сопряжение титановых сплавов методом пайки осуществляется и при отметке в 1000° С.

Водород, присутствующий в титане и понижающий его пластичность, устраняется в процессе пайки или во время нагрева при отметке в 900° С. Поэтому работа с титаном должна производиться в пространстве, лишенном воздуха, это предпочтительнее по сравнению с работами в условиях нейтральной атмосферы.

Титан хоть и предполагает обеспечение сложных условий, но все же поддается плавке, тогда как чугун относится к трудносвариваемым металлам.

Увеличение температуры при сварке и последующее охлаждение способствуют изменениям структуры характеристик чугуна в областях расплавления и шва, что указывает на то, что получить соединения, лишенные дефектов, с требуемым уровнем свойств, очень сложно.

  • необходимость использования специальных флюсов;
  • необходимость вакуума;
  • рекомендуется использовать в качестве основы припоя серебро.

Рекомендации по проведению пайки

Схема установки пайки волной.

Пред тем как произвести пайку титана дома, нужно правильно подобрать припой, метод и особенности проведения работ. Следует учесть, что титан способствует возникновению хрупких интерметаллидов в паяном шве практически со всеми элементами, которые находятся в припое. По этой причине в роли основы припоя, как правило, предпочитают серебро, образующее с титаном не столь хрупкие интерметаллиды по сравнению с остальными металлами.

Произвести качественную пайку чугуна самостоятельно весьма проблематично, что касается и пайки титана в вакууме посредством бездобавочного алюминия. Это объясняется тем, что в шве возникают интерметаллидные фазы, а сопряжение не обладает никакой прочностью.

Толщину прослойки можно минимизировать, если в роли припоя использовать алюминий, легированный Ni. Этот и некоторые иные элементы по 1% сказываются на вытеснении интерметаллидной прослойки.

Пайку сплавов описываемого металла посредством оловянно-свинцовых или иных низкотемпературных припоев используют нечасто. В данном случае перед началом работ титан нужно покрыть никелем, применив химический или гальванический метод. А вот если необходимо использовать чугун в процессе пайки, то предпочтительнее доверить дело профессионалам.

Припой для пайки титана и его сплавов

Номер патента: 1580722

Текст

СОВХОЗ СОВЕТСНИССЦИАЛИСТИЧЕСНИКРЕОЪБЛИН А 1 ЯО 1)5 В 23 К ЕТЕН ИЗС ике пайк Припой в виде слитков выплавляютв д; оной печи с нерасходуемым элек. тродом в инертной Среде из металловпромышленной частоты. Затем в вакууме10 мм рт.ст, методом спинингованияфпроводят закалку расплава припоя,на а- быстровращающемся диске, Слиток при»поя нагревают в кварцевом тигле индукционным методом с последующим самопроизвольным истечением через отверстие диаметром 0,8 мм на внешнюю. щповерхность вращающегося медного диска. При контакте расплава припоя споверхностью диска происходит егозатвердение в виде ленты толщиной40 мкм и шириной 3-4 мм,исп про Изобретение относится к пайке; анно к составу припоев для пайкиана и его сплавов, и может бытьользовано в приборостроении приизводстве тонкостенных изделийжной ФООмыеЦель изобретения — повышение мехеских свойств павного соединенияклонности припоя к аморФизации.Припой имеет следующий состав,Титан 16-18Иедь 14-16Никель ф 17-19Магний 0,05-0,2Цирконий Остальное. ГОСУДАРСТВЕННЫЙ НОМИТЕТйо изОБРетениям и ОтнРОтийм1 Й 4 ГКНТ СССР(54) ПРИП 08 ДЛЯ ПАЙКИ ТИТАЧА И ЕГОСПЛАВОВ(57) Изобретение Относится к паа име.но к составу припоев,длвтитана и е О сплавов и может бытьиспользовано в прибооостроении ипроизводстве тонкостенных изделийсложнои Формы. Цель изобОетенияповышение склонности 1-;рипоя к аморФизации и механических свойств паяных соединений., Припой имеет следующий состав, мас.Ф: титан 16-18; медь14-16; никель 17-19; магний 0,05″0,2,цирконий — остальное. Температураплавления припоя 810 С. Припой изготавливают в виде ленты толщиной40 мкм и шириной 3-4 мм, он имеетаморФную структуру. Склонность припоя к аморФизации Оценивают по критической скорости охлаждения К, онаравна 3 цз, Температура самопроизвольного истечения .через отверстиедиаметром 0,8 мм равна 950-1050 С.Лента припоя выдерживает до 10 гибов с перегибами, Припой обеспецива»ет следующие механические свойствапаяного соединения: процность на от»рыв 400 МПа, сопротивление срезу330 МПа и ударная вязкость 6 кгс и/см 2,80722 . атекучести расплава (ДТ щ 80 С), однако механические свойства соединенийухудшаются. Введение магния способствует повышению жидкотекучести припоя (температура перегрева снижаетсяс 300 до 140″217 С). Именно зти .свой»ства дают воэможность улучшить в 2 «2,5 раза пластические свойства ленты 10 припоя, обеспечить ее чистоту пд га-,зовым примесям за счет ведения процесса спинингования в вакууме присохранении аморфной структуры. Снижение в припое содержания меди и ни келя до 353 позволяет при более низкой температуре пайки и гомогенизирующего отжига формировать химическиоднородные паяные швы с плотной структурой, что способствует повышениюуровня механических свойств соединений в 1,6-2 разаПрименение данного припоя в приборном производстве позволяет перейтина более прогрессивную технологию иэ» д готовления тонкостенных изделий сложной формы методом пайки штампованныхлистовых загбтовок взамен существую»щей технологии их изготовления методом механической обработки плит и по»ковок. При этом трудоемкость процессасйижается в 3-4 раза, а коэффициент: использования металла возрастает с0,15 до 0,85. 3 15Примеры выполнения припоя и егосвойства даны в табл, 1.Пайку образцов из титайа ВТ 1-0с Фавором 0,08 мм осуществляют в вакуумной печи сопротивления при остаточном давлении 1 10 мм рт.ст. горежиму: пайка при 920 С, выдержка15 мин, гомогениэирующий отжиг при875 ОС в течение 2 ч, Склонность при-.поя к аморфизации оценивают по критической скорости охлаждения К, Жидко»текучесть расплава оценивают по температуре перегрева, расплава, необходимой для самопроизвольного расплавачерез отверстие диаметром 0,8 мм.Оценку критической скорости охлаждения проводят по максимальной толщинеаморфной ленты, реализуемой при закалке на медном диске.Механические свойства паяного соединения даны в табл. 2.ФСоставы 1 и 2 имеют концентрациюмагния ниже граничных. Данные сплавыобладают высокой склонностью к амор.Физации., что позволяет в вакууме получать пластичную ленту припоя (числоперегибов достигает 8) с аморфнойструктурой. Недостатком является низкая жидкотекучесть (ЬТ = 242-247 С),Составы 3, 4, 5, 6, 8, 9 включаюткомпоненты в граничных и средних эна.чениях. Введение в звтектический состав припоя магния в количестве 0,05,- 0,2 позволяет снизить температурурасплава до 140-217.С, что положительным образом сказывается на его, жидкотекучести, Низкая, температураплавления припоя и малый интервалкристаллизации позволяет снизитьтемпературу пайки до 920 С, обеспе, чивая при этом механические свойствасоединений на уровне показателей паяемого металла. При граничных значениях.содержания компонентов свойства припояи паяных соединений не ухудшаются. Вве»дение магния более 0,2 атФ способ. ствует дальнейшему улучшению жидко-,ф о р и у л аи 3 о б р е т е н и яПрипой для пайки титана и .его спла- вов, содержащий титан, медь, никель; и цирконий, о т л и ч а ю щ и й с я тем, что, с целью повышения механических свойств паянбго соединения й: склонности припоя к аморфизации, ой дополнительно содержит магний при следующем соотношении компонентов, масАфТитан ., 16-18,Медь14-16Никель. 17-13Магний . 0,05-0,2 Цирконий ,Остальйое.1580722 Таблица 1 Интервал Видкотеку»плавпв- честьання, Се Содераание компонентов, мвсА Склонностьк аморфнавции Сбс»твв титан Медь Микель Магний Цирконий Температурасамопроиэвольногоистечениячерез отверстиедиаметром0,8 мм, С Критическая скорость ох лаедения Р,Число гибов с пе»регибом ь ааве еаачиав е ет т800-808800-803800-8037 ЭЭ 799-808798-810796-820798-813800-810ВЦАморфналТо ав н, н, нн нИн АморФно» кристал- лическая ценне . Табли ца 2 Сопротивлениесрезу,кгс/мм 2Ударная вязкостьКГС М/СМ 2 Предел . прочнос ти нэ отРыв, кгсмм 2 Состав.припоя МФ аю а 6,6-6,8 6,6-6,8 6,3-6,а 6,1-6,4 5,8-6,2 5,0-5,3 4,4-4,8 6,1-6,4 6,2-6,6 3,4-3,6 1 40-43 2 40-43 3 39-41 38 е 4 1 5 , 38-40 6 36-38 31-33. 8 38-40 94042 10 18-21Заказ 2444 Тираж 526 Подписное ЕНЙИПИ.Государственного комитета по изобретениям и открытиям при ГКНТ СССР 113035, Москва Ж»35, Раушская наб д 4/51050 1050 1020 1000 970 950 900 1010 990 1190 Характеристикаластичностиленты 8 В 91 О 9 4 9 8 Хрупкое разру мее Струк» туралент,полученных в вакууме

Заявка

ПРЕДПРИЯТИЕ ПЯ Г-4149

ЧЕБОТНИКОВ В. Н, СУХАЧЕВ А. П, МОЛОКАНОВ В. В, КОВНЕРИСТЫЙ Ю. К, ГУСАР Ю. С, КЛИМЕНЦОВА В. И, МИХАЙЛОВА Т. Н, ТИМОШИНА Т. В, ЛИТВИНОВ В. В, ЗВЯГИН А. М

Припой для пайки титана и его сплавов

Патент 1580722

Припой для пайки титана и его сплавов

союз соеетсних ссцидлистичесних

1 (51)5 В 23 К 5/ 2

К АЗТОРСИОМУ АРВИДЕ» ЕВЬСТВУ

1 ОСУДАРСТВЕННЬЙ НОМИТЕТ

pQ изОБРетениям и отнРьщщм

fiFV! ГКНТ СССР (46) 15.05.91!. Вюл:, h 18 (21) 4612572Л7 (У2! !!з, P (72) В,)1, -!еЬотников, Д, П Сухачев

О 0 = уса!, — В., И Клименцова р.

Т Н,Кихайг!ова Т В,тимошина

В.В.Литая!!оч и А,И,Звягин (53) 621.,7=,.1„3″, (088„.8>, 56) Заявка Японии N 59-116350; ..л. C 22 ; !4/00, 1984. (54) П!РИПОЙ ДЛ!Я ПАЙКИ ТИТАНА И ЕГО

СПЛАВОВ (57) Изобретение отно-..ится к пайке, а име .-.HG N составу припоев AI .R пайки

«Зитана и его сплаBQB и может быть использовано в приборостроении и производстве тонкостенных изделий сложной формы. Цель изобретения повышение склонности припоя к аморфизации и механических свойств паяИзобретение относится к пайке; а именно к составу припоев для пайки титана и его сплавов, и может быть использовано в приборостроении при производстве тонкостенных изделий сложной формы, Цель изобретения — повышение механических свойств паяного соединения и склонности припоя к аморфизации.

Припой имеет следующий состав, масюФ

Иедь 14-16 никель о 1 7-19

Цирконий Остальное. ных соединений.. Припо» имеет следующий состав, мас.Ф: титан 16-18; медь

14-)6; никель 17-19; магний 0,05-0,2, цирконий — остальное. Температура плавления припоя 810 С. Припой изготавливают в виде ленты толщиной

40 мкм и шириной 3-4 мм, он имеет аморфную структуру. Склонность npuf10!» к аморфизации оценивают по критической скорости охлаждения К, она равна 3 !Оз, Температура самопроизвольного истечения .через отверстие диаметром 0,8 мм равна 950-1050 С.

Лента ярипоя выдерживает до 10 гибов с перегибами. Припой обеспечива» ет следующие механические свойства паяного соединения: прочность на отрыв 400 МПа, сопротивление срезу

330 МПа и ударная вязкость 6 кгс.м/см2. ,2 табл.

Припой в виде слитков выплавляют в д„; овой печи с нерасходуемым электродом в инертной Среде из металлов промышленной частоты. Затем в вакууме

10 мм рт.ст. методом спинингования ф проводят закалку расплава припоя,на быстровращающемся диске. Слиток припоя нагревают в кварцевом тигле индукционным методом с последующим самопроизвольным истечением через отверстие диаметром 0,8 мм на вяешнююповерхность вращающегося медного диска. При контакте расплава припоя с поверхностью диска происходит его затвердение в виде ленты толщиной

40 мкм и шириной 3-4 мм.

80722.. 4 текучести расплава (4T &О С), однако механические свойства соединений ухудшаются. Введение магния способствует повышению жидкотекучести припоя (температура перегрева снижается с 300 до 140-217 С). Именно эти .свойства дают воэможность улучшить в 2 «

2>5 раза пластические свойства ленты

10 припоя, обеспечить ее чистоту по газовым примесям за счет ведения процесса спинингования в вакууме при сохранении аморфной структуры. Снижение в припое содержания меди и ни-

1 келя до 353 позволяет при более низкой температуре пайки и гомогенизирующего отжига формировать химически однородные паяные швы с плотной структурой, что способствует повышению уровня механических свойств соединений в 1,6-2 раза °

Применение данного припоя в приборном производстве позволяет перейти на более прогрессивную технологию иэ». д готовления тонкостенных изделий сложной формы методом пайки штампованных листовых загбтовок взамен существующей технологии их изготовления мето» дом механической обработки плит и по» ковок. При этом трудоемкость процесса сйижается в 3-4 раза, а коэффициент

: использования металла возрастает с

Примеры выполнения припоя и его свойства даны в табл, 1.

Пайку образцов из титайа BT1I-0 с зазором 0,08 мм осуществляют в вакуумной печи сопротивления при остаточном давлении 1 10 мм pt.ñò. по режиму: пайка при 920 С, выдержка

15 мин, гомогениэирующий отжиг при

875ОС в течение 2 ч, Склонность при-. поя к вморфизации оценивают по критической скорости охлаждения К . Жидкотекучесть расплава оценивают по температуре перегрева, расплава, необходимой для самопроизвольного расплава через отверстие диаметром 0,8 мм.

Оценку критической скорости охлаждения проводят по максимальной толщине аморфной ленты, реализуемой при закал.ке на медном диске.

Механические свойства паяного соединения даны в табл. 2. !

Составы 1 и 2 имеют концентрацию магния ниже граничных. Данные сплавы обладают высокой склонностью к амор.фиэации., что позволяет в вакууме получать пластичную ленту припоя (число перегибов достигает 8) с аморфной структурой. Недостатком является низкая жидкотекучесть (ЬТ = 242-247 C).

Составы 3, 4, 5, 6, 8, 9 включают компоненты в граничных и средних значениях. Введение в эвтектический сос тав припоя магния в количестве 0,05.0,23 позволяет снизить температуру расплава до 140-217 С, что положи- . тельным образом сказывается на его, жидкотекучести, Низкая. температура плавления припоя и малый интервал кристаллизации позволяет снизить температуру пайки до 920 С, обеспе, чивая при этом механические свойства . соединений на уровне показателей паяемого металла. При граничных значениях. содержания компонентов свойства припоя и паяных соединений не ухудшаются. Вве» дение магния более 0,2 ат..Ф способ-. .. ствует дальнейшему улучшению жидко-, ю

Ф о р и у л à i и з о б р е т е Н и я

Припой для пайки титана и .его спла- вов, содержащий титан, медь, никель; и цирконий, отличающийся тем, что, с целью повышения механических свойств паяного соединения H: склонности припоя к аморфизации, ой дополнительно содержит магний при следующем соотношении компонентов, wc,Ü

Титан ., 16-18 ,Медь 14-16 Никель. 17-19

Таблица 1 Струк» тура лент, полученных в вакууме

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector